'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(x)) -> mark(x) , top(active(c())) -> top(mark(c())) , top(mark(x)) -> top(check(x)) , check(f(x)) -> f(check(x)) , check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , start(ok(x)) -> found(x) , f(found(x)) -> found(f(x)) , top(found(x)) -> top(active(x)) , active(f(x)) -> f(active(x)) , f(mark(x)) -> mark(f(x))} Details: We have computed the following set of weak (innermost) dependency pairs: { active^#(f(x)) -> c_0() , top^#(active(c())) -> c_1(top^#(mark(c()))) , top^#(mark(x)) -> c_2(top^#(check(x))) , check^#(f(x)) -> c_3(f^#(check(x))) , check^#(x) -> c_4(start^#(match(f(X()), x))) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y))) , match^#(X(), x) -> c_6(proper^#(x)) , proper^#(c()) -> c_7() , proper^#(f(x)) -> c_8(f^#(proper(x))) , f^#(ok(x)) -> c_9(f^#(x)) , start^#(ok(x)) -> c_10() , f^#(found(x)) -> c_11(f^#(x)) , top^#(found(x)) -> c_12(top^#(active(x))) , active^#(f(x)) -> c_13(f^#(active(x))) , f^#(mark(x)) -> c_14(f^#(x))} The usable rules are: { active(f(x)) -> mark(x) , check(f(x)) -> f(check(x)) , check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , active(f(x)) -> f(active(x)) , f(mark(x)) -> mark(f(x)) , start(ok(x)) -> found(x)} The estimated dependency graph contains the following edges: {top^#(active(c())) -> c_1(top^#(mark(c())))} ==> {top^#(mark(x)) -> c_2(top^#(check(x)))} {top^#(mark(x)) -> c_2(top^#(check(x)))} ==> {top^#(found(x)) -> c_12(top^#(active(x)))} {top^#(mark(x)) -> c_2(top^#(check(x)))} ==> {top^#(mark(x)) -> c_2(top^#(check(x)))} {check^#(f(x)) -> c_3(f^#(check(x)))} ==> {f^#(mark(x)) -> c_14(f^#(x))} {check^#(f(x)) -> c_3(f^#(check(x)))} ==> {f^#(found(x)) -> c_11(f^#(x))} {check^#(f(x)) -> c_3(f^#(check(x)))} ==> {f^#(ok(x)) -> c_9(f^#(x))} {check^#(x) -> c_4(start^#(match(f(X()), x)))} ==> {start^#(ok(x)) -> c_10()} {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} ==> {f^#(mark(x)) -> c_14(f^#(x))} {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} ==> {f^#(found(x)) -> c_11(f^#(x))} {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} ==> {f^#(ok(x)) -> c_9(f^#(x))} {match^#(X(), x) -> c_6(proper^#(x))} ==> {proper^#(f(x)) -> c_8(f^#(proper(x)))} {match^#(X(), x) -> c_6(proper^#(x))} ==> {proper^#(c()) -> c_7()} {proper^#(f(x)) -> c_8(f^#(proper(x)))} ==> {f^#(mark(x)) -> c_14(f^#(x))} {proper^#(f(x)) -> c_8(f^#(proper(x)))} ==> {f^#(found(x)) -> c_11(f^#(x))} {proper^#(f(x)) -> c_8(f^#(proper(x)))} ==> {f^#(ok(x)) -> c_9(f^#(x))} {f^#(ok(x)) -> c_9(f^#(x))} ==> {f^#(mark(x)) -> c_14(f^#(x))} {f^#(ok(x)) -> c_9(f^#(x))} ==> {f^#(found(x)) -> c_11(f^#(x))} {f^#(ok(x)) -> c_9(f^#(x))} ==> {f^#(ok(x)) -> c_9(f^#(x))} {f^#(found(x)) -> c_11(f^#(x))} ==> {f^#(mark(x)) -> c_14(f^#(x))} {f^#(found(x)) -> c_11(f^#(x))} ==> {f^#(found(x)) -> c_11(f^#(x))} {f^#(found(x)) -> c_11(f^#(x))} ==> {f^#(ok(x)) -> c_9(f^#(x))} {top^#(found(x)) -> c_12(top^#(active(x)))} ==> {top^#(found(x)) -> c_12(top^#(active(x)))} {top^#(found(x)) -> c_12(top^#(active(x)))} ==> {top^#(mark(x)) -> c_2(top^#(check(x)))} {top^#(found(x)) -> c_12(top^#(active(x)))} ==> {top^#(active(c())) -> c_1(top^#(mark(c())))} {active^#(f(x)) -> c_13(f^#(active(x)))} ==> {f^#(mark(x)) -> c_14(f^#(x))} {active^#(f(x)) -> c_13(f^#(active(x)))} ==> {f^#(found(x)) -> c_11(f^#(x))} {active^#(f(x)) -> c_13(f^#(active(x)))} ==> {f^#(ok(x)) -> c_9(f^#(x))} {f^#(mark(x)) -> c_14(f^#(x))} ==> {f^#(mark(x)) -> c_14(f^#(x))} {f^#(mark(x)) -> c_14(f^#(x))} ==> {f^#(found(x)) -> c_11(f^#(x))} {f^#(mark(x)) -> c_14(f^#(x))} ==> {f^#(ok(x)) -> c_9(f^#(x))} We consider the following path(s): 1) { top^#(active(c())) -> c_1(top^#(mark(c()))) , top^#(found(x)) -> c_12(top^#(active(x))) , top^#(mark(x)) -> c_2(top^#(check(x)))} The usable rules for this path are the following: { active(f(x)) -> mark(x) , check(f(x)) -> f(check(x)) , check(x) -> start(match(f(X()), x)) , active(f(x)) -> f(active(x)) , match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , start(ok(x)) -> found(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(x)) -> mark(x) , check(f(x)) -> f(check(x)) , check(x) -> start(match(f(X()), x)) , active(f(x)) -> f(active(x)) , match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , start(ok(x)) -> found(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , top^#(active(c())) -> c_1(top^#(mark(c()))) , top^#(found(x)) -> c_12(top^#(active(x))) , top^#(mark(x)) -> c_2(top^#(check(x)))} Details: We apply the weight gap principle, strictly orienting the rules { active(f(x)) -> mark(x) , proper(c()) -> ok(c()) , top^#(found(x)) -> c_12(top^#(active(x)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(f(x)) -> mark(x) , proper(c()) -> ok(c()) , top^#(found(x)) -> c_12(top^#(active(x)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [1] x1 + [1] start(x1) = [1] x1 + [1] match(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [4] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { check(x) -> start(match(f(X()), x)) , top^#(active(c())) -> c_1(top^#(mark(c())))} and weakly orienting the rules { active(f(x)) -> mark(x) , proper(c()) -> ok(c()) , top^#(found(x)) -> c_12(top^#(active(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { check(x) -> start(match(f(X()), x)) , top^#(active(c())) -> c_1(top^#(mark(c())))} Details: Interpretation Functions: active(x1) = [1] x1 + [6] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [1] x1 + [4] start(x1) = [1] x1 + [1] match(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] proper(x1) = [1] x1 + [4] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [10] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [1] x1 + [2] c_1(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [4] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(f(x), f(y)) -> f(match(x, y))} and weakly orienting the rules { check(x) -> start(match(f(X()), x)) , top^#(active(c())) -> c_1(top^#(mark(c()))) , active(f(x)) -> mark(x) , proper(c()) -> ok(c()) , top^#(found(x)) -> c_12(top^#(active(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(f(x), f(y)) -> f(match(x, y))} Details: Interpretation Functions: active(x1) = [1] x1 + [0] f(x1) = [1] x1 + [4] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [1] x1 + [9] start(x1) = [1] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [4] proper(x1) = [1] x1 + [9] ok(x1) = [1] x1 + [4] found(x1) = [1] x1 + [14] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(X(), x) -> proper(x)} and weakly orienting the rules { match(f(x), f(y)) -> f(match(x, y)) , check(x) -> start(match(f(X()), x)) , top^#(active(c())) -> c_1(top^#(mark(c()))) , active(f(x)) -> mark(x) , proper(c()) -> ok(c()) , top^#(found(x)) -> c_12(top^#(active(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(X(), x) -> proper(x)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [1] check(x1) = [1] x1 + [1] start(x1) = [1] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [8] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [1] x1 + [3] c_1(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {start(ok(x)) -> found(x)} and weakly orienting the rules { match(X(), x) -> proper(x) , match(f(x), f(y)) -> f(match(x, y)) , check(x) -> start(match(f(X()), x)) , top^#(active(c())) -> c_1(top^#(mark(c()))) , active(f(x)) -> mark(x) , proper(c()) -> ok(c()) , top^#(found(x)) -> c_12(top^#(active(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {start(ok(x)) -> found(x)} Details: Interpretation Functions: active(x1) = [1] x1 + [2] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] c() = [8] check(x1) = [1] x1 + [15] start(x1) = [1] x1 + [7] match(x1, x2) = [1] x1 + [1] x2 + [0] X() = [8] proper(x1) = [1] x1 + [8] ok(x1) = [1] x1 + [3] found(x1) = [1] x1 + [9] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [1] x1 + [11] c_1(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [9] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [2] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { check(f(x)) -> f(check(x)) , active(f(x)) -> f(active(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(f(x)) -> f(proper(x)) , top^#(mark(x)) -> c_2(top^#(check(x)))} Weak Rules: { start(ok(x)) -> found(x) , match(X(), x) -> proper(x) , match(f(x), f(y)) -> f(match(x, y)) , check(x) -> start(match(f(X()), x)) , top^#(active(c())) -> c_1(top^#(mark(c()))) , active(f(x)) -> mark(x) , proper(c()) -> ok(c()) , top^#(found(x)) -> c_12(top^#(active(x)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { check(f(x)) -> f(check(x)) , active(f(x)) -> f(active(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(f(x)) -> f(proper(x)) , top^#(mark(x)) -> c_2(top^#(check(x)))} Weak Rules: { start(ok(x)) -> found(x) , match(X(), x) -> proper(x) , match(f(x), f(y)) -> f(match(x, y)) , check(x) -> start(match(f(X()), x)) , top^#(active(c())) -> c_1(top^#(mark(c()))) , active(f(x)) -> mark(x) , proper(c()) -> ok(c()) , top^#(found(x)) -> c_12(top^#(active(x)))} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { active_0(2) -> 4 , active_1(2) -> 14 , f_1(9) -> 8 , f_2(19) -> 18 , mark_0(2) -> 2 , mark_1(12) -> 11 , c_0() -> 2 , c_1() -> 12 , check_1(2) -> 6 , check_2(12) -> 16 , start_1(7) -> 6 , start_2(17) -> 6 , start_2(20) -> 16 , match_1(8, 2) -> 7 , match_2(18, 2) -> 17 , match_2(18, 12) -> 20 , X_0() -> 2 , X_1() -> 9 , X_2() -> 19 , ok_0(2) -> 2 , found_0(2) -> 2 , top^#_0(2) -> 1 , top^#_0(4) -> 3 , top^#_1(6) -> 5 , top^#_1(11) -> 10 , top^#_1(14) -> 13 , top^#_2(16) -> 15 , c_1_1(10) -> 3 , c_1_1(10) -> 13 , c_2_1(5) -> 1 , c_2_2(15) -> 10 , c_12_0(3) -> 1 , c_12_1(13) -> 1} 2) { check^#(f(x)) -> c_3(f^#(check(x))) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} The usable rules for this path are the following: { check(f(x)) -> f(check(x)) , check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , start(ok(x)) -> found(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { check(f(x)) -> f(check(x)) , check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , start(ok(x)) -> found(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , check^#(f(x)) -> c_3(f^#(check(x))) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} Details: We apply the weight gap principle, strictly orienting the rules { start(ok(x)) -> found(x) , proper(c()) -> ok(c())} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { start(ok(x)) -> found(x) , proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [1] x1 + [1] start(x1) = [1] x1 + [1] match(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10() = [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {check^#(f(x)) -> c_3(f^#(check(x)))} and weakly orienting the rules { start(ok(x)) -> found(x) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {check^#(f(x)) -> c_3(f^#(check(x)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [2] check(x1) = [1] x1 + [1] start(x1) = [1] x1 + [1] match(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10() = [0] c_11(x1) = [1] x1 + [2] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [5] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { match(X(), x) -> proper(x) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} and weakly orienting the rules { check^#(f(x)) -> c_3(f^#(check(x))) , start(ok(x)) -> found(x) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { match(X(), x) -> proper(x) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [12] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [1] x1 + [1] start(x1) = [1] x1 + [9] match(x1, x2) = [1] x1 + [1] x2 + [8] X() = [8] proper(x1) = [1] x1 + [5] ok(x1) = [1] x1 + [4] found(x1) = [1] x1 + [12] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10() = [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [8] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(f(x), f(y)) -> f(match(x, y))} and weakly orienting the rules { match(X(), x) -> proper(x) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x)) , check^#(f(x)) -> c_3(f^#(check(x))) , start(ok(x)) -> found(x) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(f(x), f(y)) -> f(match(x, y))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [10] mark(x1) = [1] x1 + [7] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [1] x1 + [3] start(x1) = [1] x1 + [1] match(x1, x2) = [1] x1 + [1] x2 + [14] X() = [2] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [7] c_3(x1) = [1] x1 + [5] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [3] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {check(x) -> start(match(f(X()), x))} and weakly orienting the rules { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x)) , check^#(f(x)) -> c_3(f^#(check(x))) , start(ok(x)) -> found(x) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {check(x) -> start(match(f(X()), x))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] c() = [2] check(x1) = [1] x1 + [2] start(x1) = [1] x1 + [1] match(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [1] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [3] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [8] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { check(f(x)) -> f(check(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(f(x)) -> f(proper(x))} Weak Rules: { check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x)) , check^#(f(x)) -> c_3(f^#(check(x))) , start(ok(x)) -> found(x) , proper(c()) -> ok(c())} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { check(f(x)) -> f(check(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(f(x)) -> f(proper(x))} Weak Rules: { check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x)) , check^#(f(x)) -> c_3(f^#(check(x))) , start(ok(x)) -> found(x) , proper(c()) -> ok(c())} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(9) -> 3 , mark_0(11) -> 3 , mark_0(12) -> 3 , c_0() -> 5 , X_0() -> 9 , ok_0(3) -> 11 , ok_0(5) -> 11 , ok_0(9) -> 11 , ok_0(11) -> 11 , ok_0(12) -> 11 , found_0(3) -> 12 , found_0(5) -> 12 , found_0(9) -> 12 , found_0(11) -> 12 , found_0(12) -> 12 , check^#_0(3) -> 18 , check^#_0(5) -> 18 , check^#_0(9) -> 18 , check^#_0(11) -> 18 , check^#_0(12) -> 18 , f^#_0(3) -> 20 , f^#_0(5) -> 20 , f^#_0(9) -> 20 , f^#_0(11) -> 20 , f^#_0(12) -> 20 , c_9_0(20) -> 20 , c_11_0(20) -> 20 , c_14_0(20) -> 20} 3) { match^#(f(x), f(y)) -> c_5(f^#(match(x, y))) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} The usable rules for this path are the following: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y))) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} Details: We apply the weight gap principle, strictly orienting the rules {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [9] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [9] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(ok(x)) -> c_9(f^#(x))} and weakly orienting the rules {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(ok(x)) -> c_9(f^#(x))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [9] c_5(x1) = [1] x1 + [7] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(mark(x)) -> c_14(f^#(x))} and weakly orienting the rules { f^#(ok(x)) -> c_9(f^#(x)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(mark(x)) -> c_14(f^#(x))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(c()) -> ok(c()) , f^#(found(x)) -> c_11(f^#(x))} and weakly orienting the rules { f^#(mark(x)) -> c_14(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(c()) -> ok(c()) , f^#(found(x)) -> c_11(f^#(x))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [3] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [6] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [8] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(X(), x) -> proper(x)} and weakly orienting the rules { proper(c()) -> ok(c()) , f^#(found(x)) -> c_11(f^#(x)) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(X(), x) -> proper(x)} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [11] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [8] X() = [8] proper(x1) = [1] x1 + [12] ok(x1) = [1] x1 + [2] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [5] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [13] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(f(x), f(y)) -> f(match(x, y))} and weakly orienting the rules { match(X(), x) -> proper(x) , proper(c()) -> ok(c()) , f^#(found(x)) -> c_11(f^#(x)) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(f(x), f(y)) -> f(match(x, y))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [6] mark(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [0] X() = [8] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [13] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [1] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , proper(c()) -> ok(c()) , f^#(found(x)) -> c_11(f^#(x)) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , proper(c()) -> ok(c()) , f^#(found(x)) -> c_11(f^#(x)) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(9) -> 3 , mark_0(11) -> 3 , mark_0(12) -> 3 , c_0() -> 5 , X_0() -> 9 , ok_0(3) -> 11 , ok_0(5) -> 11 , ok_0(9) -> 11 , ok_0(11) -> 11 , ok_0(12) -> 11 , found_0(3) -> 12 , found_0(5) -> 12 , found_0(9) -> 12 , found_0(11) -> 12 , found_0(12) -> 12 , f^#_0(3) -> 20 , f^#_0(5) -> 20 , f^#_0(9) -> 20 , f^#_0(11) -> 20 , f^#_0(12) -> 20 , match^#_0(3, 3) -> 23 , match^#_0(3, 5) -> 23 , match^#_0(3, 9) -> 23 , match^#_0(3, 11) -> 23 , match^#_0(3, 12) -> 23 , match^#_0(5, 3) -> 23 , match^#_0(5, 5) -> 23 , match^#_0(5, 9) -> 23 , match^#_0(5, 11) -> 23 , match^#_0(5, 12) -> 23 , match^#_0(9, 3) -> 23 , match^#_0(9, 5) -> 23 , match^#_0(9, 9) -> 23 , match^#_0(9, 11) -> 23 , match^#_0(9, 12) -> 23 , match^#_0(11, 3) -> 23 , match^#_0(11, 5) -> 23 , match^#_0(11, 9) -> 23 , match^#_0(11, 11) -> 23 , match^#_0(11, 12) -> 23 , match^#_0(12, 3) -> 23 , match^#_0(12, 5) -> 23 , match^#_0(12, 9) -> 23 , match^#_0(12, 11) -> 23 , match^#_0(12, 12) -> 23 , c_9_0(20) -> 20 , c_11_0(20) -> 20 , c_14_0(20) -> 20} 4) { match^#(X(), x) -> c_6(proper^#(x)) , proper^#(f(x)) -> c_8(f^#(proper(x))) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} The usable rules for this path are the following: { proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper^#(f(x)) -> c_8(f^#(proper(x))) , match^#(X(), x) -> c_6(proper^#(x)) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} Details: We apply the weight gap principle, strictly orienting the rules {f^#(ok(x)) -> c_9(f^#(x))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(ok(x)) -> c_9(f^#(x))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [1] c_7() = [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [0] c_10() = [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match^#(X(), x) -> c_6(proper^#(x))} and weakly orienting the rules {f^#(ok(x)) -> c_9(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match^#(X(), x) -> c_6(proper^#(x))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [1] c_7() = [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [1] c_10() = [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(mark(x)) -> c_14(f^#(x))} and weakly orienting the rules { match^#(X(), x) -> c_6(proper^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(mark(x)) -> c_14(f^#(x))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [8] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [0] c_7() = [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [1] c_10() = [0] c_11(x1) = [1] x1 + [10] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(f(x)) -> c_8(f^#(proper(x)))} and weakly orienting the rules { f^#(mark(x)) -> c_14(f^#(x)) , match^#(X(), x) -> c_6(proper^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(x)) -> c_8(f^#(proper(x)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [9] c_7() = [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [1] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(found(x)) -> c_11(f^#(x))} and weakly orienting the rules { proper^#(f(x)) -> c_8(f^#(proper(x))) , f^#(mark(x)) -> c_14(f^#(x)) , match^#(X(), x) -> c_6(proper^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(found(x)) -> c_11(f^#(x))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [4] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [9] c_7() = [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [1] x1 + [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(c()) -> ok(c())} and weakly orienting the rules { f^#(found(x)) -> c_11(f^#(x)) , proper^#(f(x)) -> c_8(f^#(proper(x))) , f^#(mark(x)) -> c_14(f^#(x)) , match^#(X(), x) -> c_6(proper^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [1] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [8] proper(x1) = [1] x1 + [8] ok(x1) = [1] x1 + [4] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [12] c_7() = [0] c_8(x1) = [1] x1 + [3] c_9(x1) = [1] x1 + [4] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { proper(c()) -> ok(c()) , f^#(found(x)) -> c_11(f^#(x)) , proper^#(f(x)) -> c_8(f^#(proper(x))) , f^#(mark(x)) -> c_14(f^#(x)) , match^#(X(), x) -> c_6(proper^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { proper(c()) -> ok(c()) , f^#(found(x)) -> c_11(f^#(x)) , proper^#(f(x)) -> c_8(f^#(proper(x))) , f^#(mark(x)) -> c_14(f^#(x)) , match^#(X(), x) -> c_6(proper^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(9) -> 3 , mark_0(11) -> 3 , mark_0(12) -> 3 , c_0() -> 5 , X_0() -> 9 , ok_0(3) -> 11 , ok_0(5) -> 11 , ok_0(9) -> 11 , ok_0(11) -> 11 , ok_0(12) -> 11 , found_0(3) -> 12 , found_0(5) -> 12 , found_0(9) -> 12 , found_0(11) -> 12 , found_0(12) -> 12 , f^#_0(3) -> 20 , f^#_0(5) -> 20 , f^#_0(9) -> 20 , f^#_0(11) -> 20 , f^#_0(12) -> 20 , match^#_0(3, 3) -> 23 , match^#_0(3, 5) -> 23 , match^#_0(3, 9) -> 23 , match^#_0(3, 11) -> 23 , match^#_0(3, 12) -> 23 , match^#_0(5, 3) -> 23 , match^#_0(5, 5) -> 23 , match^#_0(5, 9) -> 23 , match^#_0(5, 11) -> 23 , match^#_0(5, 12) -> 23 , match^#_0(9, 3) -> 23 , match^#_0(9, 5) -> 23 , match^#_0(9, 9) -> 23 , match^#_0(9, 11) -> 23 , match^#_0(9, 12) -> 23 , match^#_0(11, 3) -> 23 , match^#_0(11, 5) -> 23 , match^#_0(11, 9) -> 23 , match^#_0(11, 11) -> 23 , match^#_0(11, 12) -> 23 , match^#_0(12, 3) -> 23 , match^#_0(12, 5) -> 23 , match^#_0(12, 9) -> 23 , match^#_0(12, 11) -> 23 , match^#_0(12, 12) -> 23 , c_6_0(26) -> 23 , proper^#_0(3) -> 26 , proper^#_0(5) -> 26 , proper^#_0(9) -> 26 , proper^#_0(11) -> 26 , proper^#_0(12) -> 26 , c_9_0(20) -> 20 , c_11_0(20) -> 20 , c_14_0(20) -> 20} 5) { active^#(f(x)) -> c_13(f^#(active(x))) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} The usable rules for this path are the following: { active(f(x)) -> mark(x) , active(f(x)) -> f(active(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(x)) -> mark(x) , active(f(x)) -> f(active(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , active^#(f(x)) -> c_13(f^#(active(x))) , f^#(mark(x)) -> c_14(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(ok(x)) -> c_9(f^#(x))} Details: We apply the weight gap principle, strictly orienting the rules {active(f(x)) -> mark(x)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(x)) -> mark(x)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [1] x1 + [1] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10() = [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(f(x)) -> c_13(f^#(active(x)))} and weakly orienting the rules {active(f(x)) -> mark(x)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(x)) -> c_13(f^#(active(x)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [1] x1 + [8] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [8] c_10() = [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [3] c_14(x1) = [1] x1 + [4] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(mark(x)) -> c_14(f^#(x))} and weakly orienting the rules { active^#(f(x)) -> c_13(f^#(active(x))) , active(f(x)) -> mark(x)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(mark(x)) -> c_14(f^#(x))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [1] x1 + [9] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [3] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(found(x)) -> c_11(f^#(x))} and weakly orienting the rules { f^#(mark(x)) -> c_14(f^#(x)) , active^#(f(x)) -> c_13(f^#(active(x))) , active(f(x)) -> mark(x)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(found(x)) -> c_11(f^#(x))} Details: Interpretation Functions: active(x1) = [1] x1 + [4] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] found(x1) = [1] x1 + [7] active^#(x1) = [1] x1 + [15] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [9] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [11] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(ok(x)) -> c_9(f^#(x))} and weakly orienting the rules { f^#(found(x)) -> c_11(f^#(x)) , f^#(mark(x)) -> c_14(f^#(x)) , active^#(f(x)) -> c_13(f^#(active(x))) , active(f(x)) -> mark(x)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(ok(x)) -> c_9(f^#(x))} Details: Interpretation Functions: active(x1) = [1] x1 + [2] f(x1) = [1] x1 + [2] mark(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [10] found(x1) = [1] x1 + [2] active^#(x1) = [1] x1 + [13] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [6] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [5] c_10() = [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [2] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(x)) -> f(active(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { f^#(ok(x)) -> c_9(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(mark(x)) -> c_14(f^#(x)) , active^#(f(x)) -> c_13(f^#(active(x))) , active(f(x)) -> mark(x)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(x)) -> f(active(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { f^#(ok(x)) -> c_9(f^#(x)) , f^#(found(x)) -> c_11(f^#(x)) , f^#(mark(x)) -> c_14(f^#(x)) , active^#(f(x)) -> c_13(f^#(active(x))) , active(f(x)) -> mark(x)} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(11) -> 3 , mark_0(12) -> 3 , ok_0(3) -> 11 , ok_0(11) -> 11 , ok_0(12) -> 11 , found_0(3) -> 12 , found_0(11) -> 12 , found_0(12) -> 12 , active^#_0(3) -> 13 , active^#_0(11) -> 13 , active^#_0(12) -> 13 , f^#_0(3) -> 20 , f^#_0(11) -> 20 , f^#_0(12) -> 20 , c_9_0(20) -> 20 , c_11_0(20) -> 20 , c_14_0(20) -> 20} 6) {check^#(f(x)) -> c_3(f^#(check(x)))} The usable rules for this path are the following: { check(f(x)) -> f(check(x)) , check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , start(ok(x)) -> found(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { check(f(x)) -> f(check(x)) , check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , start(ok(x)) -> found(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , check^#(f(x)) -> c_3(f^#(check(x)))} Details: We apply the weight gap principle, strictly orienting the rules { start(ok(x)) -> found(x) , proper(c()) -> ok(c())} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { start(ok(x)) -> found(x) , proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [1] x1 + [1] start(x1) = [1] x1 + [1] match(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {check^#(f(x)) -> c_3(f^#(check(x)))} and weakly orienting the rules { start(ok(x)) -> found(x) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {check^#(f(x)) -> c_3(f^#(check(x)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [1] x1 + [1] start(x1) = [1] x1 + [1] match(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y))} and weakly orienting the rules { check^#(f(x)) -> c_3(f^#(check(x))) , start(ok(x)) -> found(x) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [4] mark(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] c() = [2] check(x1) = [1] x1 + [9] start(x1) = [1] x1 + [1] match(x1, x2) = [1] x1 + [1] x2 + [0] X() = [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [1] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [13] c_3(x1) = [1] x1 + [8] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(X(), x) -> proper(x)} and weakly orienting the rules { check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y)) , check^#(f(x)) -> c_3(f^#(check(x))) , start(ok(x)) -> found(x) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(X(), x) -> proper(x)} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [1] x1 + [2] start(x1) = [1] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [3] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { check(f(x)) -> f(check(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(f(x)) -> f(proper(x))} Weak Rules: { match(X(), x) -> proper(x) , check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y)) , check^#(f(x)) -> c_3(f^#(check(x))) , start(ok(x)) -> found(x) , proper(c()) -> ok(c())} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { check(f(x)) -> f(check(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(f(x)) -> f(proper(x))} Weak Rules: { match(X(), x) -> proper(x) , check(x) -> start(match(f(X()), x)) , match(f(x), f(y)) -> f(match(x, y)) , check^#(f(x)) -> c_3(f^#(check(x))) , start(ok(x)) -> found(x) , proper(c()) -> ok(c())} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(9) -> 3 , mark_0(11) -> 3 , mark_0(12) -> 3 , c_0() -> 5 , X_0() -> 9 , ok_0(3) -> 11 , ok_0(5) -> 11 , ok_0(9) -> 11 , ok_0(11) -> 11 , ok_0(12) -> 11 , found_0(3) -> 12 , found_0(5) -> 12 , found_0(9) -> 12 , found_0(11) -> 12 , found_0(12) -> 12 , check^#_0(3) -> 18 , check^#_0(5) -> 18 , check^#_0(9) -> 18 , check^#_0(11) -> 18 , check^#_0(12) -> 18 , f^#_0(3) -> 20 , f^#_0(5) -> 20 , f^#_0(9) -> 20 , f^#_0(11) -> 20 , f^#_0(12) -> 20} 7) { check^#(x) -> c_4(start^#(match(f(X()), x))) , start^#(ok(x)) -> c_10()} The usable rules for this path are the following: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , check^#(x) -> c_4(start^#(match(f(X()), x))) , start^#(ok(x)) -> c_10()} Details: We apply the weight gap principle, strictly orienting the rules {proper(c()) -> ok(c())} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] start^#(x1) = [1] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {check^#(x) -> c_4(start^#(match(f(X()), x)))} and weakly orienting the rules {proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {check^#(x) -> c_4(start^#(match(f(X()), x)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] c() = [2] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] start^#(x1) = [1] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {start^#(ok(x)) -> c_10()} and weakly orienting the rules { check^#(x) -> c_4(start^#(match(f(X()), x))) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {start^#(ok(x)) -> c_10()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [12] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [7] start^#(x1) = [1] x1 + [1] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(X(), x) -> proper(x)} and weakly orienting the rules { start^#(ok(x)) -> c_10() , check^#(x) -> c_4(start^#(match(f(X()), x))) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(X(), x) -> proper(x)} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [13] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] start^#(x1) = [1] x1 + [1] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(f(x), f(y)) -> f(match(x, y))} and weakly orienting the rules { match(X(), x) -> proper(x) , start^#(ok(x)) -> c_10() , check^#(x) -> c_4(start^#(match(f(X()), x))) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(f(x), f(y)) -> f(match(x, y))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [4] mark(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] c() = [4] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [5] proper(x1) = [1] x1 + [4] ok(x1) = [1] x1 + [4] found(x1) = [1] x1 + [4] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [13] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] start^#(x1) = [1] x1 + [3] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(f(x)) -> f(proper(x))} Weak Rules: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , start^#(ok(x)) -> c_10() , check^#(x) -> c_4(start^#(match(f(X()), x))) , proper(c()) -> ok(c())} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(f(x)) -> f(proper(x))} Weak Rules: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , start^#(ok(x)) -> c_10() , check^#(x) -> c_4(start^#(match(f(X()), x))) , proper(c()) -> ok(c())} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { f_0(9) -> 25 , mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(9) -> 3 , mark_0(11) -> 3 , mark_0(12) -> 3 , c_0() -> 5 , match_0(25, 3) -> 24 , match_0(25, 5) -> 24 , match_0(25, 9) -> 24 , match_0(25, 11) -> 24 , match_0(25, 12) -> 24 , X_0() -> 9 , ok_0(3) -> 11 , ok_0(5) -> 11 , ok_0(9) -> 11 , ok_0(11) -> 11 , ok_0(12) -> 11 , found_0(3) -> 12 , found_0(5) -> 12 , found_0(9) -> 12 , found_0(11) -> 12 , found_0(12) -> 12 , check^#_0(3) -> 18 , check^#_0(5) -> 18 , check^#_0(9) -> 18 , check^#_0(11) -> 18 , check^#_0(12) -> 18 , c_4_0(23) -> 18 , start^#_0(3) -> 22 , start^#_0(5) -> 22 , start^#_0(9) -> 22 , start^#_0(11) -> 22 , start^#_0(12) -> 22 , start^#_0(24) -> 23 , c_10_0() -> 22} 8) {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} The usable rules for this path are the following: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} Details: We apply the weight gap principle, strictly orienting the rules {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [4] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [9] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(f(x), f(y)) -> f(match(x, y))} and weakly orienting the rules {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(f(x), f(y)) -> f(match(x, y))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [6] mark(x1) = [1] x1 + [10] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [3] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [9] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(X(), x) -> proper(x)} and weakly orienting the rules { match(f(x), f(y)) -> f(match(x, y)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(X(), x) -> proper(x)} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [10] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [9] X() = [2] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [13] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [4] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [13] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(c()) -> ok(c())} and weakly orienting the rules { match(X(), x) -> proper(x) , match(f(x), f(y)) -> f(match(x, y)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [7] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [2] X() = [14] proper(x1) = [1] x1 + [9] ok(x1) = [1] x1 + [8] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [5] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [15] c_5(x1) = [1] x1 + [4] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { proper(c()) -> ok(c()) , match(X(), x) -> proper(x) , match(f(x), f(y)) -> f(match(x, y)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { proper(c()) -> ok(c()) , match(X(), x) -> proper(x) , match(f(x), f(y)) -> f(match(x, y)) , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(2) -> 2 , c_0() -> 2 , X_0() -> 2 , ok_0(2) -> 2 , found_0(2) -> 2 , f^#_0(2) -> 1 , match^#_0(2, 2) -> 1} 9) {check^#(x) -> c_4(start^#(match(f(X()), x)))} The usable rules for this path are the following: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { match(f(x), f(y)) -> f(match(x, y)) , match(X(), x) -> proper(x) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , check^#(x) -> c_4(start^#(match(f(X()), x)))} Details: We apply the weight gap principle, strictly orienting the rules {proper(c()) -> ok(c())} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] start^#(x1) = [1] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {check^#(x) -> c_4(start^#(match(f(X()), x)))} and weakly orienting the rules {proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {check^#(x) -> c_4(start^#(match(f(X()), x)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] start^#(x1) = [1] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(f(x), f(y)) -> f(match(x, y))} and weakly orienting the rules { check^#(x) -> c_4(start^#(match(f(X()), x))) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(f(x), f(y)) -> f(match(x, y))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [9] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [12] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] start^#(x1) = [1] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match(X(), x) -> proper(x)} and weakly orienting the rules { match(f(x), f(y)) -> f(match(x, y)) , check^#(x) -> c_4(start^#(match(f(X()), x))) , proper(c()) -> ok(c())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match(X(), x) -> proper(x)} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [1] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [1] x1 + [1] x2 + [1] X() = [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] start^#(x1) = [1] x1 + [1] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(f(x)) -> f(proper(x))} Weak Rules: { match(X(), x) -> proper(x) , match(f(x), f(y)) -> f(match(x, y)) , check^#(x) -> c_4(start^#(match(f(X()), x))) , proper(c()) -> ok(c())} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , proper(f(x)) -> f(proper(x))} Weak Rules: { match(X(), x) -> proper(x) , match(f(x), f(y)) -> f(match(x, y)) , check^#(x) -> c_4(start^#(match(f(X()), x))) , proper(c()) -> ok(c())} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { f_0(9) -> 25 , mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(9) -> 3 , mark_0(11) -> 3 , mark_0(12) -> 3 , c_0() -> 5 , match_0(25, 3) -> 24 , match_0(25, 5) -> 24 , match_0(25, 9) -> 24 , match_0(25, 11) -> 24 , match_0(25, 12) -> 24 , X_0() -> 9 , ok_0(3) -> 11 , ok_0(5) -> 11 , ok_0(9) -> 11 , ok_0(11) -> 11 , ok_0(12) -> 11 , found_0(3) -> 12 , found_0(5) -> 12 , found_0(9) -> 12 , found_0(11) -> 12 , found_0(12) -> 12 , check^#_0(3) -> 18 , check^#_0(5) -> 18 , check^#_0(9) -> 18 , check^#_0(11) -> 18 , check^#_0(12) -> 18 , c_4_0(23) -> 18 , start^#_0(3) -> 22 , start^#_0(5) -> 22 , start^#_0(9) -> 22 , start^#_0(11) -> 22 , start^#_0(12) -> 22 , start^#_0(24) -> 23} 10) { match^#(X(), x) -> c_6(proper^#(x)) , proper^#(f(x)) -> c_8(f^#(proper(x)))} The usable rules for this path are the following: { proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(c()) -> ok(c()) , proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , match^#(X(), x) -> c_6(proper^#(x)) , proper^#(f(x)) -> c_8(f^#(proper(x)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(f(x)) -> c_8(f^#(proper(x)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(x)) -> c_8(f^#(proper(x)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [8] c_7() = [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {match^#(X(), x) -> c_6(proper^#(x))} and weakly orienting the rules {proper^#(f(x)) -> c_8(f^#(proper(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match^#(X(), x) -> c_6(proper^#(x))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] found(x1) = [1] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [2] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [3] c_7() = [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(c()) -> ok(c())} and weakly orienting the rules { match^#(X(), x) -> c_6(proper^#(x)) , proper^#(f(x)) -> c_8(f^#(proper(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(c()) -> ok(c())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [15] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [6] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [8] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [2] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [7] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [11] c_7() = [0] c_8(x1) = [1] x1 + [8] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { proper(c()) -> ok(c()) , match^#(X(), x) -> c_6(proper^#(x)) , proper^#(f(x)) -> c_8(f^#(proper(x)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(x)) -> f(proper(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { proper(c()) -> ok(c()) , match^#(X(), x) -> c_6(proper^#(x)) , proper^#(f(x)) -> c_8(f^#(proper(x)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(9) -> 3 , mark_0(11) -> 3 , mark_0(12) -> 3 , c_0() -> 5 , X_0() -> 9 , ok_0(3) -> 11 , ok_0(5) -> 11 , ok_0(9) -> 11 , ok_0(11) -> 11 , ok_0(12) -> 11 , found_0(3) -> 12 , found_0(5) -> 12 , found_0(9) -> 12 , found_0(11) -> 12 , found_0(12) -> 12 , f^#_0(3) -> 20 , f^#_0(5) -> 20 , f^#_0(9) -> 20 , f^#_0(11) -> 20 , f^#_0(12) -> 20 , match^#_0(3, 3) -> 23 , match^#_0(3, 5) -> 23 , match^#_0(3, 9) -> 23 , match^#_0(3, 11) -> 23 , match^#_0(3, 12) -> 23 , match^#_0(5, 3) -> 23 , match^#_0(5, 5) -> 23 , match^#_0(5, 9) -> 23 , match^#_0(5, 11) -> 23 , match^#_0(5, 12) -> 23 , match^#_0(9, 3) -> 23 , match^#_0(9, 5) -> 23 , match^#_0(9, 9) -> 23 , match^#_0(9, 11) -> 23 , match^#_0(9, 12) -> 23 , match^#_0(11, 3) -> 23 , match^#_0(11, 5) -> 23 , match^#_0(11, 9) -> 23 , match^#_0(11, 11) -> 23 , match^#_0(11, 12) -> 23 , match^#_0(12, 3) -> 23 , match^#_0(12, 5) -> 23 , match^#_0(12, 9) -> 23 , match^#_0(12, 11) -> 23 , match^#_0(12, 12) -> 23 , c_6_0(26) -> 23 , proper^#_0(3) -> 26 , proper^#_0(5) -> 26 , proper^#_0(9) -> 26 , proper^#_0(11) -> 26 , proper^#_0(12) -> 26} 11) {active^#(f(x)) -> c_13(f^#(active(x)))} The usable rules for this path are the following: { active(f(x)) -> mark(x) , active(f(x)) -> f(active(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(x)) -> mark(x) , active(f(x)) -> f(active(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x)) , active^#(f(x)) -> c_13(f^#(active(x)))} Details: We apply the weight gap principle, strictly orienting the rules {active(f(x)) -> mark(x)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(x)) -> mark(x)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [1] x1 + [1] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(f(x)) -> c_13(f^#(active(x)))} and weakly orienting the rules {active(f(x)) -> mark(x)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(x)) -> c_13(f^#(active(x)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] found(x1) = [1] x1 + [0] active^#(x1) = [1] x1 + [4] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(x)) -> f(active(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { active^#(f(x)) -> c_13(f^#(active(x))) , active(f(x)) -> mark(x)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(x)) -> f(active(x)) , f(ok(x)) -> ok(f(x)) , f(found(x)) -> found(f(x)) , f(mark(x)) -> mark(f(x))} Weak Rules: { active^#(f(x)) -> c_13(f^#(active(x))) , active(f(x)) -> mark(x)} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(11) -> 3 , mark_0(12) -> 3 , ok_0(3) -> 11 , ok_0(11) -> 11 , ok_0(12) -> 11 , found_0(3) -> 12 , found_0(11) -> 12 , found_0(12) -> 12 , active^#_0(3) -> 13 , active^#_0(11) -> 13 , active^#_0(12) -> 13 , f^#_0(3) -> 20 , f^#_0(11) -> 20 , f^#_0(12) -> 20} 12) { match^#(X(), x) -> c_6(proper^#(x)) , proper^#(c()) -> c_7()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] found(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {proper^#(c()) -> c_7()} Weak Rules: {match^#(X(), x) -> c_6(proper^#(x))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(c()) -> c_7()} and weakly orienting the rules {match^#(X(), x) -> c_6(proper^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(c()) -> c_7()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] found(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [1] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { proper^#(c()) -> c_7() , match^#(X(), x) -> c_6(proper^#(x))} Details: The given problem does not contain any strict rules 13) {match^#(X(), x) -> c_6(proper^#(x))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] found(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {match^#(X(), x) -> c_6(proper^#(x))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {match^#(X(), x) -> c_6(proper^#(x))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {match^#(X(), x) -> c_6(proper^#(x))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] found(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {match^#(X(), x) -> c_6(proper^#(x))} Details: The given problem does not contain any strict rules 14) {active^#(f(x)) -> c_0()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] found(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {active^#(f(x)) -> c_0()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {active^#(f(x)) -> c_0()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(x)) -> c_0()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] c() = [0] check(x1) = [0] x1 + [0] start(x1) = [0] x1 + [0] match(x1, x2) = [0] x1 + [0] x2 + [0] X() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] found(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0() = [0] top^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] check^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] start^#(x1) = [0] x1 + [0] match^#(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7() = [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {active^#(f(x)) -> c_0()} Details: The given problem does not contain any strict rules