'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  active(f(x)) -> mark(x)
     , top(active(c())) -> top(mark(c()))
     , top(mark(x)) -> top(check(x))
     , check(f(x)) -> f(check(x))
     , check(x) -> start(match(f(X()), x))
     , match(f(x), f(y)) -> f(match(x, y))
     , match(X(), x) -> proper(x)
     , proper(c()) -> ok(c())
     , proper(f(x)) -> f(proper(x))
     , f(ok(x)) -> ok(f(x))
     , start(ok(x)) -> found(x)
     , f(found(x)) -> found(f(x))
     , top(found(x)) -> top(active(x))
     , active(f(x)) -> f(active(x))
     , f(mark(x)) -> mark(f(x))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  active^#(f(x)) -> c_0()
    , top^#(active(c())) -> c_1(top^#(mark(c())))
    , top^#(mark(x)) -> c_2(top^#(check(x)))
    , check^#(f(x)) -> c_3(f^#(check(x)))
    , check^#(x) -> c_4(start^#(match(f(X()), x)))
    , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))
    , match^#(X(), x) -> c_6(proper^#(x))
    , proper^#(c()) -> c_7()
    , proper^#(f(x)) -> c_8(f^#(proper(x)))
    , f^#(ok(x)) -> c_9(f^#(x))
    , start^#(ok(x)) -> c_10()
    , f^#(found(x)) -> c_11(f^#(x))
    , top^#(found(x)) -> c_12(top^#(active(x)))
    , active^#(f(x)) -> c_13(f^#(active(x)))
    , f^#(mark(x)) -> c_14(f^#(x))}
  
  The usable rules are:
   {  active(f(x)) -> mark(x)
    , check(f(x)) -> f(check(x))
    , check(x) -> start(match(f(X()), x))
    , match(f(x), f(y)) -> f(match(x, y))
    , match(X(), x) -> proper(x)
    , proper(c()) -> ok(c())
    , proper(f(x)) -> f(proper(x))
    , f(ok(x)) -> ok(f(x))
    , f(found(x)) -> found(f(x))
    , active(f(x)) -> f(active(x))
    , f(mark(x)) -> mark(f(x))
    , start(ok(x)) -> found(x)}
  
  The estimated dependency graph contains the following edges:
   {top^#(active(c())) -> c_1(top^#(mark(c())))}
     ==> {top^#(mark(x)) -> c_2(top^#(check(x)))}
   {top^#(mark(x)) -> c_2(top^#(check(x)))}
     ==> {top^#(found(x)) -> c_12(top^#(active(x)))}
   {top^#(mark(x)) -> c_2(top^#(check(x)))}
     ==> {top^#(mark(x)) -> c_2(top^#(check(x)))}
   {check^#(f(x)) -> c_3(f^#(check(x)))}
     ==> {f^#(mark(x)) -> c_14(f^#(x))}
   {check^#(f(x)) -> c_3(f^#(check(x)))}
     ==> {f^#(found(x)) -> c_11(f^#(x))}
   {check^#(f(x)) -> c_3(f^#(check(x)))}
     ==> {f^#(ok(x)) -> c_9(f^#(x))}
   {check^#(x) -> c_4(start^#(match(f(X()), x)))}
     ==> {start^#(ok(x)) -> c_10()}
   {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
     ==> {f^#(mark(x)) -> c_14(f^#(x))}
   {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
     ==> {f^#(found(x)) -> c_11(f^#(x))}
   {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
     ==> {f^#(ok(x)) -> c_9(f^#(x))}
   {match^#(X(), x) -> c_6(proper^#(x))}
     ==> {proper^#(f(x)) -> c_8(f^#(proper(x)))}
   {match^#(X(), x) -> c_6(proper^#(x))}
     ==> {proper^#(c()) -> c_7()}
   {proper^#(f(x)) -> c_8(f^#(proper(x)))}
     ==> {f^#(mark(x)) -> c_14(f^#(x))}
   {proper^#(f(x)) -> c_8(f^#(proper(x)))}
     ==> {f^#(found(x)) -> c_11(f^#(x))}
   {proper^#(f(x)) -> c_8(f^#(proper(x)))}
     ==> {f^#(ok(x)) -> c_9(f^#(x))}
   {f^#(ok(x)) -> c_9(f^#(x))}
     ==> {f^#(mark(x)) -> c_14(f^#(x))}
   {f^#(ok(x)) -> c_9(f^#(x))}
     ==> {f^#(found(x)) -> c_11(f^#(x))}
   {f^#(ok(x)) -> c_9(f^#(x))}
     ==> {f^#(ok(x)) -> c_9(f^#(x))}
   {f^#(found(x)) -> c_11(f^#(x))}
     ==> {f^#(mark(x)) -> c_14(f^#(x))}
   {f^#(found(x)) -> c_11(f^#(x))}
     ==> {f^#(found(x)) -> c_11(f^#(x))}
   {f^#(found(x)) -> c_11(f^#(x))}
     ==> {f^#(ok(x)) -> c_9(f^#(x))}
   {top^#(found(x)) -> c_12(top^#(active(x)))}
     ==> {top^#(found(x)) -> c_12(top^#(active(x)))}
   {top^#(found(x)) -> c_12(top^#(active(x)))}
     ==> {top^#(mark(x)) -> c_2(top^#(check(x)))}
   {top^#(found(x)) -> c_12(top^#(active(x)))}
     ==> {top^#(active(c())) -> c_1(top^#(mark(c())))}
   {active^#(f(x)) -> c_13(f^#(active(x)))}
     ==> {f^#(mark(x)) -> c_14(f^#(x))}
   {active^#(f(x)) -> c_13(f^#(active(x)))}
     ==> {f^#(found(x)) -> c_11(f^#(x))}
   {active^#(f(x)) -> c_13(f^#(active(x)))}
     ==> {f^#(ok(x)) -> c_9(f^#(x))}
   {f^#(mark(x)) -> c_14(f^#(x))}
     ==> {f^#(mark(x)) -> c_14(f^#(x))}
   {f^#(mark(x)) -> c_14(f^#(x))}
     ==> {f^#(found(x)) -> c_11(f^#(x))}
   {f^#(mark(x)) -> c_14(f^#(x))}
     ==> {f^#(ok(x)) -> c_9(f^#(x))}
  
  We consider the following path(s):
   1) {  top^#(active(c())) -> c_1(top^#(mark(c())))
       , top^#(found(x)) -> c_12(top^#(active(x)))
       , top^#(mark(x)) -> c_2(top^#(check(x)))}
      
      The usable rules for this path are the following:
      {  active(f(x)) -> mark(x)
       , check(f(x)) -> f(check(x))
       , check(x) -> start(match(f(X()), x))
       , active(f(x)) -> f(active(x))
       , match(f(x), f(y)) -> f(match(x, y))
       , match(X(), x) -> proper(x)
       , f(ok(x)) -> ok(f(x))
       , f(found(x)) -> found(f(x))
       , f(mark(x)) -> mark(f(x))
       , start(ok(x)) -> found(x)
       , proper(c()) -> ok(c())
       , proper(f(x)) -> f(proper(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(x)) -> mark(x)
               , check(f(x)) -> f(check(x))
               , check(x) -> start(match(f(X()), x))
               , active(f(x)) -> f(active(x))
               , match(f(x), f(y)) -> f(match(x, y))
               , match(X(), x) -> proper(x)
               , f(ok(x)) -> ok(f(x))
               , f(found(x)) -> found(f(x))
               , f(mark(x)) -> mark(f(x))
               , start(ok(x)) -> found(x)
               , proper(c()) -> ok(c())
               , proper(f(x)) -> f(proper(x))
               , top^#(active(c())) -> c_1(top^#(mark(c())))
               , top^#(found(x)) -> c_12(top^#(active(x)))
               , top^#(mark(x)) -> c_2(top^#(check(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(f(x)) -> mark(x)
             , proper(c()) -> ok(c())
             , top^#(found(x)) -> c_12(top^#(active(x)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(f(x)) -> mark(x)
               , proper(c()) -> ok(c())
               , top^#(found(x)) -> c_12(top^#(active(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [1] x1 + [1]
                  start(x1) = [1] x1 + [1]
                  match(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [4]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [1] x1 + [4]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  check(x) -> start(match(f(X()), x))
             , top^#(active(c())) -> c_1(top^#(mark(c())))}
            and weakly orienting the rules
            {  active(f(x)) -> mark(x)
             , proper(c()) -> ok(c())
             , top^#(found(x)) -> c_12(top^#(active(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  check(x) -> start(match(f(X()), x))
               , top^#(active(c())) -> c_1(top^#(mark(c())))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [6]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [1] x1 + [4]
                  start(x1) = [1] x1 + [1]
                  match(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [4]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [10]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [4]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(f(x), f(y)) -> f(match(x, y))}
            and weakly orienting the rules
            {  check(x) -> start(match(f(X()), x))
             , top^#(active(c())) -> c_1(top^#(mark(c())))
             , active(f(x)) -> mark(x)
             , proper(c()) -> ok(c())
             , top^#(found(x)) -> c_12(top^#(active(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(f(x), f(y)) -> f(match(x, y))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [4]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [1] x1 + [9]
                  start(x1) = [1] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [4]
                  proper(x1) = [1] x1 + [9]
                  ok(x1) = [1] x1 + [4]
                  found(x1) = [1] x1 + [14]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(X(), x) -> proper(x)}
            and weakly orienting the rules
            {  match(f(x), f(y)) -> f(match(x, y))
             , check(x) -> start(match(f(X()), x))
             , top^#(active(c())) -> c_1(top^#(mark(c())))
             , active(f(x)) -> mark(x)
             , proper(c()) -> ok(c())
             , top^#(found(x)) -> c_12(top^#(active(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(X(), x) -> proper(x)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [1]
                  check(x1) = [1] x1 + [1]
                  start(x1) = [1] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [8]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [1] x1 + [3]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {start(ok(x)) -> found(x)}
            and weakly orienting the rules
            {  match(X(), x) -> proper(x)
             , match(f(x), f(y)) -> f(match(x, y))
             , check(x) -> start(match(f(X()), x))
             , top^#(active(c())) -> c_1(top^#(mark(c())))
             , active(f(x)) -> mark(x)
             , proper(c()) -> ok(c())
             , top^#(found(x)) -> c_12(top^#(active(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {start(ok(x)) -> found(x)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [2]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  c() = [8]
                  check(x1) = [1] x1 + [15]
                  start(x1) = [1] x1 + [7]
                  match(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [8]
                  proper(x1) = [1] x1 + [8]
                  ok(x1) = [1] x1 + [3]
                  found(x1) = [1] x1 + [9]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [1] x1 + [11]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [9]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [2]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  check(f(x)) -> f(check(x))
                 , active(f(x)) -> f(active(x))
                 , f(ok(x)) -> ok(f(x))
                 , f(found(x)) -> found(f(x))
                 , f(mark(x)) -> mark(f(x))
                 , proper(f(x)) -> f(proper(x))
                 , top^#(mark(x)) -> c_2(top^#(check(x)))}
              Weak Rules:
                {  start(ok(x)) -> found(x)
                 , match(X(), x) -> proper(x)
                 , match(f(x), f(y)) -> f(match(x, y))
                 , check(x) -> start(match(f(X()), x))
                 , top^#(active(c())) -> c_1(top^#(mark(c())))
                 , active(f(x)) -> mark(x)
                 , proper(c()) -> ok(c())
                 , top^#(found(x)) -> c_12(top^#(active(x)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  check(f(x)) -> f(check(x))
                   , active(f(x)) -> f(active(x))
                   , f(ok(x)) -> ok(f(x))
                   , f(found(x)) -> found(f(x))
                   , f(mark(x)) -> mark(f(x))
                   , proper(f(x)) -> f(proper(x))
                   , top^#(mark(x)) -> c_2(top^#(check(x)))}
                Weak Rules:
                  {  start(ok(x)) -> found(x)
                   , match(X(), x) -> proper(x)
                   , match(f(x), f(y)) -> f(match(x, y))
                   , check(x) -> start(match(f(X()), x))
                   , top^#(active(c())) -> c_1(top^#(mark(c())))
                   , active(f(x)) -> mark(x)
                   , proper(c()) -> ok(c())
                   , top^#(found(x)) -> c_12(top^#(active(x)))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  active_0(2) -> 4
                 , active_1(2) -> 14
                 , f_1(9) -> 8
                 , f_2(19) -> 18
                 , mark_0(2) -> 2
                 , mark_1(12) -> 11
                 , c_0() -> 2
                 , c_1() -> 12
                 , check_1(2) -> 6
                 , check_2(12) -> 16
                 , start_1(7) -> 6
                 , start_2(17) -> 6
                 , start_2(20) -> 16
                 , match_1(8, 2) -> 7
                 , match_2(18, 2) -> 17
                 , match_2(18, 12) -> 20
                 , X_0() -> 2
                 , X_1() -> 9
                 , X_2() -> 19
                 , ok_0(2) -> 2
                 , found_0(2) -> 2
                 , top^#_0(2) -> 1
                 , top^#_0(4) -> 3
                 , top^#_1(6) -> 5
                 , top^#_1(11) -> 10
                 , top^#_1(14) -> 13
                 , top^#_2(16) -> 15
                 , c_1_1(10) -> 3
                 , c_1_1(10) -> 13
                 , c_2_1(5) -> 1
                 , c_2_2(15) -> 10
                 , c_12_0(3) -> 1
                 , c_12_1(13) -> 1}
      
   2) {  check^#(f(x)) -> c_3(f^#(check(x)))
       , f^#(mark(x)) -> c_14(f^#(x))
       , f^#(found(x)) -> c_11(f^#(x))
       , f^#(ok(x)) -> c_9(f^#(x))}
      
      The usable rules for this path are the following:
      {  check(f(x)) -> f(check(x))
       , check(x) -> start(match(f(X()), x))
       , match(f(x), f(y)) -> f(match(x, y))
       , match(X(), x) -> proper(x)
       , f(ok(x)) -> ok(f(x))
       , f(found(x)) -> found(f(x))
       , f(mark(x)) -> mark(f(x))
       , start(ok(x)) -> found(x)
       , proper(c()) -> ok(c())
       , proper(f(x)) -> f(proper(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  check(f(x)) -> f(check(x))
               , check(x) -> start(match(f(X()), x))
               , match(f(x), f(y)) -> f(match(x, y))
               , match(X(), x) -> proper(x)
               , f(ok(x)) -> ok(f(x))
               , f(found(x)) -> found(f(x))
               , f(mark(x)) -> mark(f(x))
               , start(ok(x)) -> found(x)
               , proper(c()) -> ok(c())
               , proper(f(x)) -> f(proper(x))
               , check^#(f(x)) -> c_3(f^#(check(x)))
               , f^#(mark(x)) -> c_14(f^#(x))
               , f^#(found(x)) -> c_11(f^#(x))
               , f^#(ok(x)) -> c_9(f^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  start(ok(x)) -> found(x)
             , proper(c()) -> ok(c())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  start(ok(x)) -> found(x)
               , proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [1] x1 + [1]
                  start(x1) = [1] x1 + [1]
                  match(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(f(x)) -> c_3(f^#(check(x)))}
            and weakly orienting the rules
            {  start(ok(x)) -> found(x)
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(f(x)) -> c_3(f^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [2]
                  check(x1) = [1] x1 + [1]
                  start(x1) = [1] x1 + [1]
                  match(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [2]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [5]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  match(X(), x) -> proper(x)
             , f^#(mark(x)) -> c_14(f^#(x))
             , f^#(found(x)) -> c_11(f^#(x))
             , f^#(ok(x)) -> c_9(f^#(x))}
            and weakly orienting the rules
            {  check^#(f(x)) -> c_3(f^#(check(x)))
             , start(ok(x)) -> found(x)
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  match(X(), x) -> proper(x)
               , f^#(mark(x)) -> c_14(f^#(x))
               , f^#(found(x)) -> c_11(f^#(x))
               , f^#(ok(x)) -> c_9(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [12]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [1] x1 + [1]
                  start(x1) = [1] x1 + [9]
                  match(x1, x2) = [1] x1 + [1] x2 + [8]
                  X() = [8]
                  proper(x1) = [1] x1 + [5]
                  ok(x1) = [1] x1 + [4]
                  found(x1) = [1] x1 + [12]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [8]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(f(x), f(y)) -> f(match(x, y))}
            and weakly orienting the rules
            {  match(X(), x) -> proper(x)
             , f^#(mark(x)) -> c_14(f^#(x))
             , f^#(found(x)) -> c_11(f^#(x))
             , f^#(ok(x)) -> c_9(f^#(x))
             , check^#(f(x)) -> c_3(f^#(check(x)))
             , start(ok(x)) -> found(x)
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(f(x), f(y)) -> f(match(x, y))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [10]
                  mark(x1) = [1] x1 + [7]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [1] x1 + [3]
                  start(x1) = [1] x1 + [1]
                  match(x1, x2) = [1] x1 + [1] x2 + [14]
                  X() = [2]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [7]
                  c_3(x1) = [1] x1 + [5]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [3]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check(x) -> start(match(f(X()), x))}
            and weakly orienting the rules
            {  match(f(x), f(y)) -> f(match(x, y))
             , match(X(), x) -> proper(x)
             , f^#(mark(x)) -> c_14(f^#(x))
             , f^#(found(x)) -> c_11(f^#(x))
             , f^#(ok(x)) -> c_9(f^#(x))
             , check^#(f(x)) -> c_3(f^#(check(x)))
             , start(ok(x)) -> found(x)
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(x) -> start(match(f(X()), x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  c() = [2]
                  check(x1) = [1] x1 + [2]
                  start(x1) = [1] x1 + [1]
                  match(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [1]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [3]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [8]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  check(f(x)) -> f(check(x))
                 , f(ok(x)) -> ok(f(x))
                 , f(found(x)) -> found(f(x))
                 , f(mark(x)) -> mark(f(x))
                 , proper(f(x)) -> f(proper(x))}
              Weak Rules:
                {  check(x) -> start(match(f(X()), x))
                 , match(f(x), f(y)) -> f(match(x, y))
                 , match(X(), x) -> proper(x)
                 , f^#(mark(x)) -> c_14(f^#(x))
                 , f^#(found(x)) -> c_11(f^#(x))
                 , f^#(ok(x)) -> c_9(f^#(x))
                 , check^#(f(x)) -> c_3(f^#(check(x)))
                 , start(ok(x)) -> found(x)
                 , proper(c()) -> ok(c())}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  check(f(x)) -> f(check(x))
                   , f(ok(x)) -> ok(f(x))
                   , f(found(x)) -> found(f(x))
                   , f(mark(x)) -> mark(f(x))
                   , proper(f(x)) -> f(proper(x))}
                Weak Rules:
                  {  check(x) -> start(match(f(X()), x))
                   , match(f(x), f(y)) -> f(match(x, y))
                   , match(X(), x) -> proper(x)
                   , f^#(mark(x)) -> c_14(f^#(x))
                   , f^#(found(x)) -> c_11(f^#(x))
                   , f^#(ok(x)) -> c_9(f^#(x))
                   , check^#(f(x)) -> c_3(f^#(check(x)))
                   , start(ok(x)) -> found(x)
                   , proper(c()) -> ok(c())}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(9) -> 3
                 , mark_0(11) -> 3
                 , mark_0(12) -> 3
                 , c_0() -> 5
                 , X_0() -> 9
                 , ok_0(3) -> 11
                 , ok_0(5) -> 11
                 , ok_0(9) -> 11
                 , ok_0(11) -> 11
                 , ok_0(12) -> 11
                 , found_0(3) -> 12
                 , found_0(5) -> 12
                 , found_0(9) -> 12
                 , found_0(11) -> 12
                 , found_0(12) -> 12
                 , check^#_0(3) -> 18
                 , check^#_0(5) -> 18
                 , check^#_0(9) -> 18
                 , check^#_0(11) -> 18
                 , check^#_0(12) -> 18
                 , f^#_0(3) -> 20
                 , f^#_0(5) -> 20
                 , f^#_0(9) -> 20
                 , f^#_0(11) -> 20
                 , f^#_0(12) -> 20
                 , c_9_0(20) -> 20
                 , c_11_0(20) -> 20
                 , c_14_0(20) -> 20}
      
   3) {  match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))
       , f^#(mark(x)) -> c_14(f^#(x))
       , f^#(found(x)) -> c_11(f^#(x))
       , f^#(ok(x)) -> c_9(f^#(x))}
      
      The usable rules for this path are the following:
      {  match(f(x), f(y)) -> f(match(x, y))
       , match(X(), x) -> proper(x)
       , proper(c()) -> ok(c())
       , proper(f(x)) -> f(proper(x))
       , f(ok(x)) -> ok(f(x))
       , f(found(x)) -> found(f(x))
       , f(mark(x)) -> mark(f(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  match(f(x), f(y)) -> f(match(x, y))
               , match(X(), x) -> proper(x)
               , proper(c()) -> ok(c())
               , proper(f(x)) -> f(proper(x))
               , f(ok(x)) -> ok(f(x))
               , f(found(x)) -> found(f(x))
               , f(mark(x)) -> mark(f(x))
               , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))
               , f^#(mark(x)) -> c_14(f^#(x))
               , f^#(found(x)) -> c_11(f^#(x))
               , f^#(ok(x)) -> c_9(f^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [9]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(ok(x)) -> c_9(f^#(x))}
            and weakly orienting the rules
            {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(ok(x)) -> c_9(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_5(x1) = [1] x1 + [7]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(mark(x)) -> c_14(f^#(x))}
            and weakly orienting the rules
            {  f^#(ok(x)) -> c_9(f^#(x))
             , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(mark(x)) -> c_14(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(c()) -> ok(c())
             , f^#(found(x)) -> c_11(f^#(x))}
            and weakly orienting the rules
            {  f^#(mark(x)) -> c_14(f^#(x))
             , f^#(ok(x)) -> c_9(f^#(x))
             , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(c()) -> ok(c())
               , f^#(found(x)) -> c_11(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [6]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [8]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(X(), x) -> proper(x)}
            and weakly orienting the rules
            {  proper(c()) -> ok(c())
             , f^#(found(x)) -> c_11(f^#(x))
             , f^#(mark(x)) -> c_14(f^#(x))
             , f^#(ok(x)) -> c_9(f^#(x))
             , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(X(), x) -> proper(x)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [11]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [8]
                  X() = [8]
                  proper(x1) = [1] x1 + [12]
                  ok(x1) = [1] x1 + [2]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [5]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [13]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(f(x), f(y)) -> f(match(x, y))}
            and weakly orienting the rules
            {  match(X(), x) -> proper(x)
             , proper(c()) -> ok(c())
             , f^#(found(x)) -> c_11(f^#(x))
             , f^#(mark(x)) -> c_14(f^#(x))
             , f^#(ok(x)) -> c_9(f^#(x))
             , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(f(x), f(y)) -> f(match(x, y))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [6]
                  mark(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [8]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [13]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(x)) -> f(proper(x))
                 , f(ok(x)) -> ok(f(x))
                 , f(found(x)) -> found(f(x))
                 , f(mark(x)) -> mark(f(x))}
              Weak Rules:
                {  match(f(x), f(y)) -> f(match(x, y))
                 , match(X(), x) -> proper(x)
                 , proper(c()) -> ok(c())
                 , f^#(found(x)) -> c_11(f^#(x))
                 , f^#(mark(x)) -> c_14(f^#(x))
                 , f^#(ok(x)) -> c_9(f^#(x))
                 , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(x)) -> f(proper(x))
                   , f(ok(x)) -> ok(f(x))
                   , f(found(x)) -> found(f(x))
                   , f(mark(x)) -> mark(f(x))}
                Weak Rules:
                  {  match(f(x), f(y)) -> f(match(x, y))
                   , match(X(), x) -> proper(x)
                   , proper(c()) -> ok(c())
                   , f^#(found(x)) -> c_11(f^#(x))
                   , f^#(mark(x)) -> c_14(f^#(x))
                   , f^#(ok(x)) -> c_9(f^#(x))
                   , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(9) -> 3
                 , mark_0(11) -> 3
                 , mark_0(12) -> 3
                 , c_0() -> 5
                 , X_0() -> 9
                 , ok_0(3) -> 11
                 , ok_0(5) -> 11
                 , ok_0(9) -> 11
                 , ok_0(11) -> 11
                 , ok_0(12) -> 11
                 , found_0(3) -> 12
                 , found_0(5) -> 12
                 , found_0(9) -> 12
                 , found_0(11) -> 12
                 , found_0(12) -> 12
                 , f^#_0(3) -> 20
                 , f^#_0(5) -> 20
                 , f^#_0(9) -> 20
                 , f^#_0(11) -> 20
                 , f^#_0(12) -> 20
                 , match^#_0(3, 3) -> 23
                 , match^#_0(3, 5) -> 23
                 , match^#_0(3, 9) -> 23
                 , match^#_0(3, 11) -> 23
                 , match^#_0(3, 12) -> 23
                 , match^#_0(5, 3) -> 23
                 , match^#_0(5, 5) -> 23
                 , match^#_0(5, 9) -> 23
                 , match^#_0(5, 11) -> 23
                 , match^#_0(5, 12) -> 23
                 , match^#_0(9, 3) -> 23
                 , match^#_0(9, 5) -> 23
                 , match^#_0(9, 9) -> 23
                 , match^#_0(9, 11) -> 23
                 , match^#_0(9, 12) -> 23
                 , match^#_0(11, 3) -> 23
                 , match^#_0(11, 5) -> 23
                 , match^#_0(11, 9) -> 23
                 , match^#_0(11, 11) -> 23
                 , match^#_0(11, 12) -> 23
                 , match^#_0(12, 3) -> 23
                 , match^#_0(12, 5) -> 23
                 , match^#_0(12, 9) -> 23
                 , match^#_0(12, 11) -> 23
                 , match^#_0(12, 12) -> 23
                 , c_9_0(20) -> 20
                 , c_11_0(20) -> 20
                 , c_14_0(20) -> 20}
      
   4) {  match^#(X(), x) -> c_6(proper^#(x))
       , proper^#(f(x)) -> c_8(f^#(proper(x)))
       , f^#(mark(x)) -> c_14(f^#(x))
       , f^#(found(x)) -> c_11(f^#(x))
       , f^#(ok(x)) -> c_9(f^#(x))}
      
      The usable rules for this path are the following:
      {  proper(c()) -> ok(c())
       , proper(f(x)) -> f(proper(x))
       , f(ok(x)) -> ok(f(x))
       , f(found(x)) -> found(f(x))
       , f(mark(x)) -> mark(f(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(c()) -> ok(c())
               , proper(f(x)) -> f(proper(x))
               , f(ok(x)) -> ok(f(x))
               , f(found(x)) -> found(f(x))
               , f(mark(x)) -> mark(f(x))
               , proper^#(f(x)) -> c_8(f^#(proper(x)))
               , match^#(X(), x) -> c_6(proper^#(x))
               , f^#(mark(x)) -> c_14(f^#(x))
               , f^#(found(x)) -> c_11(f^#(x))
               , f^#(ok(x)) -> c_9(f^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {f^#(ok(x)) -> c_9(f^#(x))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(ok(x)) -> c_9(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match^#(X(), x) -> c_6(proper^#(x))}
            and weakly orienting the rules
            {f^#(ok(x)) -> c_9(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match^#(X(), x) -> c_6(proper^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(mark(x)) -> c_14(f^#(x))}
            and weakly orienting the rules
            {  match^#(X(), x) -> c_6(proper^#(x))
             , f^#(ok(x)) -> c_9(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(mark(x)) -> c_14(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [8]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [10]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(x)) -> c_8(f^#(proper(x)))}
            and weakly orienting the rules
            {  f^#(mark(x)) -> c_14(f^#(x))
             , match^#(X(), x) -> c_6(proper^#(x))
             , f^#(ok(x)) -> c_9(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(x)) -> c_8(f^#(proper(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_7() = [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(found(x)) -> c_11(f^#(x))}
            and weakly orienting the rules
            {  proper^#(f(x)) -> c_8(f^#(proper(x)))
             , f^#(mark(x)) -> c_14(f^#(x))
             , match^#(X(), x) -> c_6(proper^#(x))
             , f^#(ok(x)) -> c_9(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(found(x)) -> c_11(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [4]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_7() = [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(c()) -> ok(c())}
            and weakly orienting the rules
            {  f^#(found(x)) -> c_11(f^#(x))
             , proper^#(f(x)) -> c_8(f^#(proper(x)))
             , f^#(mark(x)) -> c_14(f^#(x))
             , match^#(X(), x) -> c_6(proper^#(x))
             , f^#(ok(x)) -> c_9(f^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [1]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [8]
                  proper(x1) = [1] x1 + [8]
                  ok(x1) = [1] x1 + [4]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [12]
                  c_7() = [0]
                  c_8(x1) = [1] x1 + [3]
                  c_9(x1) = [1] x1 + [4]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(x)) -> f(proper(x))
                 , f(ok(x)) -> ok(f(x))
                 , f(found(x)) -> found(f(x))
                 , f(mark(x)) -> mark(f(x))}
              Weak Rules:
                {  proper(c()) -> ok(c())
                 , f^#(found(x)) -> c_11(f^#(x))
                 , proper^#(f(x)) -> c_8(f^#(proper(x)))
                 , f^#(mark(x)) -> c_14(f^#(x))
                 , match^#(X(), x) -> c_6(proper^#(x))
                 , f^#(ok(x)) -> c_9(f^#(x))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(x)) -> f(proper(x))
                   , f(ok(x)) -> ok(f(x))
                   , f(found(x)) -> found(f(x))
                   , f(mark(x)) -> mark(f(x))}
                Weak Rules:
                  {  proper(c()) -> ok(c())
                   , f^#(found(x)) -> c_11(f^#(x))
                   , proper^#(f(x)) -> c_8(f^#(proper(x)))
                   , f^#(mark(x)) -> c_14(f^#(x))
                   , match^#(X(), x) -> c_6(proper^#(x))
                   , f^#(ok(x)) -> c_9(f^#(x))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(9) -> 3
                 , mark_0(11) -> 3
                 , mark_0(12) -> 3
                 , c_0() -> 5
                 , X_0() -> 9
                 , ok_0(3) -> 11
                 , ok_0(5) -> 11
                 , ok_0(9) -> 11
                 , ok_0(11) -> 11
                 , ok_0(12) -> 11
                 , found_0(3) -> 12
                 , found_0(5) -> 12
                 , found_0(9) -> 12
                 , found_0(11) -> 12
                 , found_0(12) -> 12
                 , f^#_0(3) -> 20
                 , f^#_0(5) -> 20
                 , f^#_0(9) -> 20
                 , f^#_0(11) -> 20
                 , f^#_0(12) -> 20
                 , match^#_0(3, 3) -> 23
                 , match^#_0(3, 5) -> 23
                 , match^#_0(3, 9) -> 23
                 , match^#_0(3, 11) -> 23
                 , match^#_0(3, 12) -> 23
                 , match^#_0(5, 3) -> 23
                 , match^#_0(5, 5) -> 23
                 , match^#_0(5, 9) -> 23
                 , match^#_0(5, 11) -> 23
                 , match^#_0(5, 12) -> 23
                 , match^#_0(9, 3) -> 23
                 , match^#_0(9, 5) -> 23
                 , match^#_0(9, 9) -> 23
                 , match^#_0(9, 11) -> 23
                 , match^#_0(9, 12) -> 23
                 , match^#_0(11, 3) -> 23
                 , match^#_0(11, 5) -> 23
                 , match^#_0(11, 9) -> 23
                 , match^#_0(11, 11) -> 23
                 , match^#_0(11, 12) -> 23
                 , match^#_0(12, 3) -> 23
                 , match^#_0(12, 5) -> 23
                 , match^#_0(12, 9) -> 23
                 , match^#_0(12, 11) -> 23
                 , match^#_0(12, 12) -> 23
                 , c_6_0(26) -> 23
                 , proper^#_0(3) -> 26
                 , proper^#_0(5) -> 26
                 , proper^#_0(9) -> 26
                 , proper^#_0(11) -> 26
                 , proper^#_0(12) -> 26
                 , c_9_0(20) -> 20
                 , c_11_0(20) -> 20
                 , c_14_0(20) -> 20}
      
   5) {  active^#(f(x)) -> c_13(f^#(active(x)))
       , f^#(mark(x)) -> c_14(f^#(x))
       , f^#(found(x)) -> c_11(f^#(x))
       , f^#(ok(x)) -> c_9(f^#(x))}
      
      The usable rules for this path are the following:
      {  active(f(x)) -> mark(x)
       , active(f(x)) -> f(active(x))
       , f(ok(x)) -> ok(f(x))
       , f(found(x)) -> found(f(x))
       , f(mark(x)) -> mark(f(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(x)) -> mark(x)
               , active(f(x)) -> f(active(x))
               , f(ok(x)) -> ok(f(x))
               , f(found(x)) -> found(f(x))
               , f(mark(x)) -> mark(f(x))
               , active^#(f(x)) -> c_13(f^#(active(x)))
               , f^#(mark(x)) -> c_14(f^#(x))
               , f^#(found(x)) -> c_11(f^#(x))
               , f^#(ok(x)) -> c_9(f^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active(f(x)) -> mark(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(x)) -> mark(x)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(x)) -> c_13(f^#(active(x)))}
            and weakly orienting the rules
            {active(f(x)) -> mark(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(x)) -> c_13(f^#(active(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [8]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [3]
                  c_14(x1) = [1] x1 + [4]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(mark(x)) -> c_14(f^#(x))}
            and weakly orienting the rules
            {  active^#(f(x)) -> c_13(f^#(active(x)))
             , active(f(x)) -> mark(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(mark(x)) -> c_14(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [3]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(found(x)) -> c_11(f^#(x))}
            and weakly orienting the rules
            {  f^#(mark(x)) -> c_14(f^#(x))
             , active^#(f(x)) -> c_13(f^#(active(x)))
             , active(f(x)) -> mark(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(found(x)) -> c_11(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [4]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  found(x1) = [1] x1 + [7]
                  active^#(x1) = [1] x1 + [15]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [9]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [11]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(ok(x)) -> c_9(f^#(x))}
            and weakly orienting the rules
            {  f^#(found(x)) -> c_11(f^#(x))
             , f^#(mark(x)) -> c_14(f^#(x))
             , active^#(f(x)) -> c_13(f^#(active(x)))
             , active(f(x)) -> mark(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(ok(x)) -> c_9(f^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [2]
                  f(x1) = [1] x1 + [2]
                  mark(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [10]
                  found(x1) = [1] x1 + [2]
                  active^#(x1) = [1] x1 + [13]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [6]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [5]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [2]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(x)) -> f(active(x))
                 , f(ok(x)) -> ok(f(x))
                 , f(found(x)) -> found(f(x))
                 , f(mark(x)) -> mark(f(x))}
              Weak Rules:
                {  f^#(ok(x)) -> c_9(f^#(x))
                 , f^#(found(x)) -> c_11(f^#(x))
                 , f^#(mark(x)) -> c_14(f^#(x))
                 , active^#(f(x)) -> c_13(f^#(active(x)))
                 , active(f(x)) -> mark(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(x)) -> f(active(x))
                   , f(ok(x)) -> ok(f(x))
                   , f(found(x)) -> found(f(x))
                   , f(mark(x)) -> mark(f(x))}
                Weak Rules:
                  {  f^#(ok(x)) -> c_9(f^#(x))
                   , f^#(found(x)) -> c_11(f^#(x))
                   , f^#(mark(x)) -> c_14(f^#(x))
                   , active^#(f(x)) -> c_13(f^#(active(x)))
                   , active(f(x)) -> mark(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(11) -> 3
                 , mark_0(12) -> 3
                 , ok_0(3) -> 11
                 , ok_0(11) -> 11
                 , ok_0(12) -> 11
                 , found_0(3) -> 12
                 , found_0(11) -> 12
                 , found_0(12) -> 12
                 , active^#_0(3) -> 13
                 , active^#_0(11) -> 13
                 , active^#_0(12) -> 13
                 , f^#_0(3) -> 20
                 , f^#_0(11) -> 20
                 , f^#_0(12) -> 20
                 , c_9_0(20) -> 20
                 , c_11_0(20) -> 20
                 , c_14_0(20) -> 20}
      
   6) {check^#(f(x)) -> c_3(f^#(check(x)))}
      
      The usable rules for this path are the following:
      {  check(f(x)) -> f(check(x))
       , check(x) -> start(match(f(X()), x))
       , match(f(x), f(y)) -> f(match(x, y))
       , match(X(), x) -> proper(x)
       , f(ok(x)) -> ok(f(x))
       , f(found(x)) -> found(f(x))
       , f(mark(x)) -> mark(f(x))
       , start(ok(x)) -> found(x)
       , proper(c()) -> ok(c())
       , proper(f(x)) -> f(proper(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  check(f(x)) -> f(check(x))
               , check(x) -> start(match(f(X()), x))
               , match(f(x), f(y)) -> f(match(x, y))
               , match(X(), x) -> proper(x)
               , f(ok(x)) -> ok(f(x))
               , f(found(x)) -> found(f(x))
               , f(mark(x)) -> mark(f(x))
               , start(ok(x)) -> found(x)
               , proper(c()) -> ok(c())
               , proper(f(x)) -> f(proper(x))
               , check^#(f(x)) -> c_3(f^#(check(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  start(ok(x)) -> found(x)
             , proper(c()) -> ok(c())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  start(ok(x)) -> found(x)
               , proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [1] x1 + [1]
                  start(x1) = [1] x1 + [1]
                  match(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(f(x)) -> c_3(f^#(check(x)))}
            and weakly orienting the rules
            {  start(ok(x)) -> found(x)
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(f(x)) -> c_3(f^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [1] x1 + [1]
                  start(x1) = [1] x1 + [1]
                  match(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  check(x) -> start(match(f(X()), x))
             , match(f(x), f(y)) -> f(match(x, y))}
            and weakly orienting the rules
            {  check^#(f(x)) -> c_3(f^#(check(x)))
             , start(ok(x)) -> found(x)
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  check(x) -> start(match(f(X()), x))
               , match(f(x), f(y)) -> f(match(x, y))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [4]
                  mark(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  c() = [2]
                  check(x1) = [1] x1 + [9]
                  start(x1) = [1] x1 + [1]
                  match(x1, x2) = [1] x1 + [1] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [1]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [13]
                  c_3(x1) = [1] x1 + [8]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(X(), x) -> proper(x)}
            and weakly orienting the rules
            {  check(x) -> start(match(f(X()), x))
             , match(f(x), f(y)) -> f(match(x, y))
             , check^#(f(x)) -> c_3(f^#(check(x)))
             , start(ok(x)) -> found(x)
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(X(), x) -> proper(x)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [1] x1 + [2]
                  start(x1) = [1] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [3]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  check(f(x)) -> f(check(x))
                 , f(ok(x)) -> ok(f(x))
                 , f(found(x)) -> found(f(x))
                 , f(mark(x)) -> mark(f(x))
                 , proper(f(x)) -> f(proper(x))}
              Weak Rules:
                {  match(X(), x) -> proper(x)
                 , check(x) -> start(match(f(X()), x))
                 , match(f(x), f(y)) -> f(match(x, y))
                 , check^#(f(x)) -> c_3(f^#(check(x)))
                 , start(ok(x)) -> found(x)
                 , proper(c()) -> ok(c())}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  check(f(x)) -> f(check(x))
                   , f(ok(x)) -> ok(f(x))
                   , f(found(x)) -> found(f(x))
                   , f(mark(x)) -> mark(f(x))
                   , proper(f(x)) -> f(proper(x))}
                Weak Rules:
                  {  match(X(), x) -> proper(x)
                   , check(x) -> start(match(f(X()), x))
                   , match(f(x), f(y)) -> f(match(x, y))
                   , check^#(f(x)) -> c_3(f^#(check(x)))
                   , start(ok(x)) -> found(x)
                   , proper(c()) -> ok(c())}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(9) -> 3
                 , mark_0(11) -> 3
                 , mark_0(12) -> 3
                 , c_0() -> 5
                 , X_0() -> 9
                 , ok_0(3) -> 11
                 , ok_0(5) -> 11
                 , ok_0(9) -> 11
                 , ok_0(11) -> 11
                 , ok_0(12) -> 11
                 , found_0(3) -> 12
                 , found_0(5) -> 12
                 , found_0(9) -> 12
                 , found_0(11) -> 12
                 , found_0(12) -> 12
                 , check^#_0(3) -> 18
                 , check^#_0(5) -> 18
                 , check^#_0(9) -> 18
                 , check^#_0(11) -> 18
                 , check^#_0(12) -> 18
                 , f^#_0(3) -> 20
                 , f^#_0(5) -> 20
                 , f^#_0(9) -> 20
                 , f^#_0(11) -> 20
                 , f^#_0(12) -> 20}
      
   7) {  check^#(x) -> c_4(start^#(match(f(X()), x)))
       , start^#(ok(x)) -> c_10()}
      
      The usable rules for this path are the following:
      {  match(f(x), f(y)) -> f(match(x, y))
       , match(X(), x) -> proper(x)
       , f(ok(x)) -> ok(f(x))
       , f(found(x)) -> found(f(x))
       , f(mark(x)) -> mark(f(x))
       , proper(c()) -> ok(c())
       , proper(f(x)) -> f(proper(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  match(f(x), f(y)) -> f(match(x, y))
               , match(X(), x) -> proper(x)
               , f(ok(x)) -> ok(f(x))
               , f(found(x)) -> found(f(x))
               , f(mark(x)) -> mark(f(x))
               , proper(c()) -> ok(c())
               , proper(f(x)) -> f(proper(x))
               , check^#(x) -> c_4(start^#(match(f(X()), x)))
               , start^#(ok(x)) -> c_10()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper(c()) -> ok(c())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  start^#(x1) = [1] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(x) -> c_4(start^#(match(f(X()), x)))}
            and weakly orienting the rules
            {proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(x) -> c_4(start^#(match(f(X()), x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  c() = [2]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  start^#(x1) = [1] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {start^#(ok(x)) -> c_10()}
            and weakly orienting the rules
            {  check^#(x) -> c_4(start^#(match(f(X()), x)))
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {start^#(ok(x)) -> c_10()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [12]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [7]
                  start^#(x1) = [1] x1 + [1]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(X(), x) -> proper(x)}
            and weakly orienting the rules
            {  start^#(ok(x)) -> c_10()
             , check^#(x) -> c_4(start^#(match(f(X()), x)))
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(X(), x) -> proper(x)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [13]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  start^#(x1) = [1] x1 + [1]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(f(x), f(y)) -> f(match(x, y))}
            and weakly orienting the rules
            {  match(X(), x) -> proper(x)
             , start^#(ok(x)) -> c_10()
             , check^#(x) -> c_4(start^#(match(f(X()), x)))
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(f(x), f(y)) -> f(match(x, y))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [4]
                  mark(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  c() = [4]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [5]
                  proper(x1) = [1] x1 + [4]
                  ok(x1) = [1] x1 + [4]
                  found(x1) = [1] x1 + [4]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [13]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  start^#(x1) = [1] x1 + [3]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(ok(x)) -> ok(f(x))
                 , f(found(x)) -> found(f(x))
                 , f(mark(x)) -> mark(f(x))
                 , proper(f(x)) -> f(proper(x))}
              Weak Rules:
                {  match(f(x), f(y)) -> f(match(x, y))
                 , match(X(), x) -> proper(x)
                 , start^#(ok(x)) -> c_10()
                 , check^#(x) -> c_4(start^#(match(f(X()), x)))
                 , proper(c()) -> ok(c())}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(ok(x)) -> ok(f(x))
                   , f(found(x)) -> found(f(x))
                   , f(mark(x)) -> mark(f(x))
                   , proper(f(x)) -> f(proper(x))}
                Weak Rules:
                  {  match(f(x), f(y)) -> f(match(x, y))
                   , match(X(), x) -> proper(x)
                   , start^#(ok(x)) -> c_10()
                   , check^#(x) -> c_4(start^#(match(f(X()), x)))
                   , proper(c()) -> ok(c())}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  f_0(9) -> 25
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(9) -> 3
                 , mark_0(11) -> 3
                 , mark_0(12) -> 3
                 , c_0() -> 5
                 , match_0(25, 3) -> 24
                 , match_0(25, 5) -> 24
                 , match_0(25, 9) -> 24
                 , match_0(25, 11) -> 24
                 , match_0(25, 12) -> 24
                 , X_0() -> 9
                 , ok_0(3) -> 11
                 , ok_0(5) -> 11
                 , ok_0(9) -> 11
                 , ok_0(11) -> 11
                 , ok_0(12) -> 11
                 , found_0(3) -> 12
                 , found_0(5) -> 12
                 , found_0(9) -> 12
                 , found_0(11) -> 12
                 , found_0(12) -> 12
                 , check^#_0(3) -> 18
                 , check^#_0(5) -> 18
                 , check^#_0(9) -> 18
                 , check^#_0(11) -> 18
                 , check^#_0(12) -> 18
                 , c_4_0(23) -> 18
                 , start^#_0(3) -> 22
                 , start^#_0(5) -> 22
                 , start^#_0(9) -> 22
                 , start^#_0(11) -> 22
                 , start^#_0(12) -> 22
                 , start^#_0(24) -> 23
                 , c_10_0() -> 22}
      
   8) {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
      
      The usable rules for this path are the following:
      {  match(f(x), f(y)) -> f(match(x, y))
       , match(X(), x) -> proper(x)
       , proper(c()) -> ok(c())
       , proper(f(x)) -> f(proper(x))
       , f(ok(x)) -> ok(f(x))
       , f(found(x)) -> found(f(x))
       , f(mark(x)) -> mark(f(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  match(f(x), f(y)) -> f(match(x, y))
               , match(X(), x) -> proper(x)
               , proper(c()) -> ok(c())
               , proper(f(x)) -> f(proper(x))
               , f(ok(x)) -> ok(f(x))
               , f(found(x)) -> found(f(x))
               , f(mark(x)) -> mark(f(x))
               , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [4]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(f(x), f(y)) -> f(match(x, y))}
            and weakly orienting the rules
            {match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(f(x), f(y)) -> f(match(x, y))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [6]
                  mark(x1) = [1] x1 + [10]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [3]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(X(), x) -> proper(x)}
            and weakly orienting the rules
            {  match(f(x), f(y)) -> f(match(x, y))
             , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(X(), x) -> proper(x)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [10]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [9]
                  X() = [2]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [13]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [4]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [13]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(c()) -> ok(c())}
            and weakly orienting the rules
            {  match(X(), x) -> proper(x)
             , match(f(x), f(y)) -> f(match(x, y))
             , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [7]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [2]
                  X() = [14]
                  proper(x1) = [1] x1 + [9]
                  ok(x1) = [1] x1 + [8]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [5]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [15]
                  c_5(x1) = [1] x1 + [4]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(x)) -> f(proper(x))
                 , f(ok(x)) -> ok(f(x))
                 , f(found(x)) -> found(f(x))
                 , f(mark(x)) -> mark(f(x))}
              Weak Rules:
                {  proper(c()) -> ok(c())
                 , match(X(), x) -> proper(x)
                 , match(f(x), f(y)) -> f(match(x, y))
                 , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(x)) -> f(proper(x))
                   , f(ok(x)) -> ok(f(x))
                   , f(found(x)) -> found(f(x))
                   , f(mark(x)) -> mark(f(x))}
                Weak Rules:
                  {  proper(c()) -> ok(c())
                   , match(X(), x) -> proper(x)
                   , match(f(x), f(y)) -> f(match(x, y))
                   , match^#(f(x), f(y)) -> c_5(f^#(match(x, y)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , c_0() -> 2
                 , X_0() -> 2
                 , ok_0(2) -> 2
                 , found_0(2) -> 2
                 , f^#_0(2) -> 1
                 , match^#_0(2, 2) -> 1}
      
   9) {check^#(x) -> c_4(start^#(match(f(X()), x)))}
      
      The usable rules for this path are the following:
      {  match(f(x), f(y)) -> f(match(x, y))
       , match(X(), x) -> proper(x)
       , f(ok(x)) -> ok(f(x))
       , f(found(x)) -> found(f(x))
       , f(mark(x)) -> mark(f(x))
       , proper(c()) -> ok(c())
       , proper(f(x)) -> f(proper(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  match(f(x), f(y)) -> f(match(x, y))
               , match(X(), x) -> proper(x)
               , f(ok(x)) -> ok(f(x))
               , f(found(x)) -> found(f(x))
               , f(mark(x)) -> mark(f(x))
               , proper(c()) -> ok(c())
               , proper(f(x)) -> f(proper(x))
               , check^#(x) -> c_4(start^#(match(f(X()), x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper(c()) -> ok(c())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  start^#(x1) = [1] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(x) -> c_4(start^#(match(f(X()), x)))}
            and weakly orienting the rules
            {proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(x) -> c_4(start^#(match(f(X()), x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  start^#(x1) = [1] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(f(x), f(y)) -> f(match(x, y))}
            and weakly orienting the rules
            {  check^#(x) -> c_4(start^#(match(f(X()), x)))
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(f(x), f(y)) -> f(match(x, y))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [9]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [12]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  start^#(x1) = [1] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match(X(), x) -> proper(x)}
            and weakly orienting the rules
            {  match(f(x), f(y)) -> f(match(x, y))
             , check^#(x) -> c_4(start^#(match(f(X()), x)))
             , proper(c()) -> ok(c())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match(X(), x) -> proper(x)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [1]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [1] x1 + [1] x2 + [1]
                  X() = [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  start^#(x1) = [1] x1 + [1]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(ok(x)) -> ok(f(x))
                 , f(found(x)) -> found(f(x))
                 , f(mark(x)) -> mark(f(x))
                 , proper(f(x)) -> f(proper(x))}
              Weak Rules:
                {  match(X(), x) -> proper(x)
                 , match(f(x), f(y)) -> f(match(x, y))
                 , check^#(x) -> c_4(start^#(match(f(X()), x)))
                 , proper(c()) -> ok(c())}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(ok(x)) -> ok(f(x))
                   , f(found(x)) -> found(f(x))
                   , f(mark(x)) -> mark(f(x))
                   , proper(f(x)) -> f(proper(x))}
                Weak Rules:
                  {  match(X(), x) -> proper(x)
                   , match(f(x), f(y)) -> f(match(x, y))
                   , check^#(x) -> c_4(start^#(match(f(X()), x)))
                   , proper(c()) -> ok(c())}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  f_0(9) -> 25
                 , mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(9) -> 3
                 , mark_0(11) -> 3
                 , mark_0(12) -> 3
                 , c_0() -> 5
                 , match_0(25, 3) -> 24
                 , match_0(25, 5) -> 24
                 , match_0(25, 9) -> 24
                 , match_0(25, 11) -> 24
                 , match_0(25, 12) -> 24
                 , X_0() -> 9
                 , ok_0(3) -> 11
                 , ok_0(5) -> 11
                 , ok_0(9) -> 11
                 , ok_0(11) -> 11
                 , ok_0(12) -> 11
                 , found_0(3) -> 12
                 , found_0(5) -> 12
                 , found_0(9) -> 12
                 , found_0(11) -> 12
                 , found_0(12) -> 12
                 , check^#_0(3) -> 18
                 , check^#_0(5) -> 18
                 , check^#_0(9) -> 18
                 , check^#_0(11) -> 18
                 , check^#_0(12) -> 18
                 , c_4_0(23) -> 18
                 , start^#_0(3) -> 22
                 , start^#_0(5) -> 22
                 , start^#_0(9) -> 22
                 , start^#_0(11) -> 22
                 , start^#_0(12) -> 22
                 , start^#_0(24) -> 23}
      
   10)
      {  match^#(X(), x) -> c_6(proper^#(x))
       , proper^#(f(x)) -> c_8(f^#(proper(x)))}
      
      The usable rules for this path are the following:
      {  proper(c()) -> ok(c())
       , proper(f(x)) -> f(proper(x))
       , f(ok(x)) -> ok(f(x))
       , f(found(x)) -> found(f(x))
       , f(mark(x)) -> mark(f(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(c()) -> ok(c())
               , proper(f(x)) -> f(proper(x))
               , f(ok(x)) -> ok(f(x))
               , f(found(x)) -> found(f(x))
               , f(mark(x)) -> mark(f(x))
               , match^#(X(), x) -> c_6(proper^#(x))
               , proper^#(f(x)) -> c_8(f^#(proper(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(x)) -> c_8(f^#(proper(x)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(x)) -> c_8(f^#(proper(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [8]
                  c_7() = [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {match^#(X(), x) -> c_6(proper^#(x))}
            and weakly orienting the rules
            {proper^#(f(x)) -> c_8(f^#(proper(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match^#(X(), x) -> c_6(proper^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [2]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [3]
                  c_7() = [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper(c()) -> ok(c())}
            and weakly orienting the rules
            {  match^#(X(), x) -> c_6(proper^#(x))
             , proper^#(f(x)) -> c_8(f^#(proper(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper(c()) -> ok(c())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [15]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [6]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [8]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [2]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [7]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [11]
                  c_7() = [0]
                  c_8(x1) = [1] x1 + [8]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(x)) -> f(proper(x))
                 , f(ok(x)) -> ok(f(x))
                 , f(found(x)) -> found(f(x))
                 , f(mark(x)) -> mark(f(x))}
              Weak Rules:
                {  proper(c()) -> ok(c())
                 , match^#(X(), x) -> c_6(proper^#(x))
                 , proper^#(f(x)) -> c_8(f^#(proper(x)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(x)) -> f(proper(x))
                   , f(ok(x)) -> ok(f(x))
                   , f(found(x)) -> found(f(x))
                   , f(mark(x)) -> mark(f(x))}
                Weak Rules:
                  {  proper(c()) -> ok(c())
                   , match^#(X(), x) -> c_6(proper^#(x))
                   , proper^#(f(x)) -> c_8(f^#(proper(x)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(9) -> 3
                 , mark_0(11) -> 3
                 , mark_0(12) -> 3
                 , c_0() -> 5
                 , X_0() -> 9
                 , ok_0(3) -> 11
                 , ok_0(5) -> 11
                 , ok_0(9) -> 11
                 , ok_0(11) -> 11
                 , ok_0(12) -> 11
                 , found_0(3) -> 12
                 , found_0(5) -> 12
                 , found_0(9) -> 12
                 , found_0(11) -> 12
                 , found_0(12) -> 12
                 , f^#_0(3) -> 20
                 , f^#_0(5) -> 20
                 , f^#_0(9) -> 20
                 , f^#_0(11) -> 20
                 , f^#_0(12) -> 20
                 , match^#_0(3, 3) -> 23
                 , match^#_0(3, 5) -> 23
                 , match^#_0(3, 9) -> 23
                 , match^#_0(3, 11) -> 23
                 , match^#_0(3, 12) -> 23
                 , match^#_0(5, 3) -> 23
                 , match^#_0(5, 5) -> 23
                 , match^#_0(5, 9) -> 23
                 , match^#_0(5, 11) -> 23
                 , match^#_0(5, 12) -> 23
                 , match^#_0(9, 3) -> 23
                 , match^#_0(9, 5) -> 23
                 , match^#_0(9, 9) -> 23
                 , match^#_0(9, 11) -> 23
                 , match^#_0(9, 12) -> 23
                 , match^#_0(11, 3) -> 23
                 , match^#_0(11, 5) -> 23
                 , match^#_0(11, 9) -> 23
                 , match^#_0(11, 11) -> 23
                 , match^#_0(11, 12) -> 23
                 , match^#_0(12, 3) -> 23
                 , match^#_0(12, 5) -> 23
                 , match^#_0(12, 9) -> 23
                 , match^#_0(12, 11) -> 23
                 , match^#_0(12, 12) -> 23
                 , c_6_0(26) -> 23
                 , proper^#_0(3) -> 26
                 , proper^#_0(5) -> 26
                 , proper^#_0(9) -> 26
                 , proper^#_0(11) -> 26
                 , proper^#_0(12) -> 26}
      
   11)
      {active^#(f(x)) -> c_13(f^#(active(x)))}
      
      The usable rules for this path are the following:
      {  active(f(x)) -> mark(x)
       , active(f(x)) -> f(active(x))
       , f(ok(x)) -> ok(f(x))
       , f(found(x)) -> found(f(x))
       , f(mark(x)) -> mark(f(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(x)) -> mark(x)
               , active(f(x)) -> f(active(x))
               , f(ok(x)) -> ok(f(x))
               , f(found(x)) -> found(f(x))
               , f(mark(x)) -> mark(f(x))
               , active^#(f(x)) -> c_13(f^#(active(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active(f(x)) -> mark(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(x)) -> mark(x)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(x)) -> c_13(f^#(active(x)))}
            and weakly orienting the rules
            {active(f(x)) -> mark(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(x)) -> c_13(f^#(active(x)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  found(x1) = [1] x1 + [0]
                  active^#(x1) = [1] x1 + [4]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(x)) -> f(active(x))
                 , f(ok(x)) -> ok(f(x))
                 , f(found(x)) -> found(f(x))
                 , f(mark(x)) -> mark(f(x))}
              Weak Rules:
                {  active^#(f(x)) -> c_13(f^#(active(x)))
                 , active(f(x)) -> mark(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(x)) -> f(active(x))
                   , f(ok(x)) -> ok(f(x))
                   , f(found(x)) -> found(f(x))
                   , f(mark(x)) -> mark(f(x))}
                Weak Rules:
                  {  active^#(f(x)) -> c_13(f^#(active(x)))
                   , active(f(x)) -> mark(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(11) -> 3
                 , mark_0(12) -> 3
                 , ok_0(3) -> 11
                 , ok_0(11) -> 11
                 , ok_0(12) -> 11
                 , found_0(3) -> 12
                 , found_0(11) -> 12
                 , found_0(12) -> 12
                 , active^#_0(3) -> 13
                 , active^#_0(11) -> 13
                 , active^#_0(12) -> 13
                 , f^#_0(3) -> 20
                 , f^#_0(11) -> 20
                 , f^#_0(12) -> 20}
      
   12)
      {  match^#(X(), x) -> c_6(proper^#(x))
       , proper^#(c()) -> c_7()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           c() = [0]
           check(x1) = [0] x1 + [0]
           start(x1) = [0] x1 + [0]
           match(x1, x2) = [0] x1 + [0] x2 + [0]
           X() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           found(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0() = [0]
           top^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           check^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           start^#(x1) = [0] x1 + [0]
           match^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(c()) -> c_7()}
            Weak Rules: {match^#(X(), x) -> c_6(proper^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(c()) -> c_7()}
            and weakly orienting the rules
            {match^#(X(), x) -> c_6(proper^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(c()) -> c_7()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  found(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  proper^#(c()) -> c_7()
                 , match^#(X(), x) -> c_6(proper^#(x))}
            
            Details:         
              The given problem does not contain any strict rules
      
   13)
      {match^#(X(), x) -> c_6(proper^#(x))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           c() = [0]
           check(x1) = [0] x1 + [0]
           start(x1) = [0] x1 + [0]
           match(x1, x2) = [0] x1 + [0] x2 + [0]
           X() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           found(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0() = [0]
           top^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           check^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           start^#(x1) = [0] x1 + [0]
           match^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {match^#(X(), x) -> c_6(proper^#(x))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {match^#(X(), x) -> c_6(proper^#(x))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {match^#(X(), x) -> c_6(proper^#(x))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  found(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {match^#(X(), x) -> c_6(proper^#(x))}
            
            Details:         
              The given problem does not contain any strict rules
      
   14)
      {active^#(f(x)) -> c_0()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           c() = [0]
           check(x1) = [0] x1 + [0]
           start(x1) = [0] x1 + [0]
           match(x1, x2) = [0] x1 + [0] x2 + [0]
           X() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           found(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0() = [0]
           top^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           check^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           start^#(x1) = [0] x1 + [0]
           match^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(f(x)) -> c_0()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(x)) -> c_0()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(x)) -> c_0()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  c() = [0]
                  check(x1) = [0] x1 + [0]
                  start(x1) = [0] x1 + [0]
                  match(x1, x2) = [0] x1 + [0] x2 + [0]
                  X() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  found(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  top^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  start^#(x1) = [0] x1 + [0]
                  match^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7() = [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10() = [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(f(x)) -> c_0()}
            
            Details:         
              The given problem does not contain any strict rules